摘要
采用一种改进的向量式遗忘因子最小二乘法(vector forgetting factor-least square,VFF-LS)作为城轨列车储能元件参数辨识的方法。首先,对比分析了典型储能电池相关等效电路模型,选取Thevenin等效电路模型降低参数辨识过程复杂度;其次,在传统最小二乘法(least square,LS)参数辨识原理的基础上推导出VFF-LS的储能元件参数辨识方法;最后,采用上述方法对2种典型的城轨列车典型储能元件电池组及单体进行了参数辨识。结果表明,通过VFF-LS方法得到的参数辨识误差均小于15 mV,低于传统LS方法。所采用的方法在充分降低辨识过程复杂性的基础上,能够对不同类型的电池进行精确参数辨识,这将为城轨列车电池管理系统(battery management system,BMS)的设计提供有力支持。
This paper has adopted an improved vector forgetting factor-least square method(VFF-LS)to identify parameters for urban rail train energy storage components.Firstly,comparative analysis of several typical battery equivalent circuit models has been completed,and Thevenin model has been selected because it can reduce the complexity of the parameter identification process.After that,the parameter identification method of energy storage components of VFF-LS has been derived based on the parameter identification theory of conventional least square(LS)method.Finally,the methods mentioned above have been used to identify the parameters of two typical urban rail train energy storage components―battery pack and cell.The results show that the parameter identification errors of VFF-LS method are less than 15 mV,lower than the conventional LS method.The identification method proposed in this paper can reduce obviously the complexity of the identification process,and identify accurately the parameters of different types of battery,which can provide favorable support for the design of battery management system(BMS)for urban rail trains.
作者
唐佳
刘士齐
刘静雯
刘启胜
赵诣
连张翔
TANG Jia;LIU Shiqi;LIU Jingwen;LIU Qisheng;ZHAO Yi;LIAN Zhangxiang(School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China;State Grid Yichang Supply Power Company,Yichang 443000,China)
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2020年第6期527-533,共7页
Engineering Journal of Wuhan University
基金
国家重点研发计划项目(编号:2017YFB1201003-21)。
关键词
城轨列车
储能元件
最小二乘法
多遗忘因子
参数辨识
urban rail train
energy storage component
least square method
multi-forgetting factor
parameter identification