期刊文献+

教育大数据在大气科学专业教育中的影响和可行性研究

Study on the Impact and Feasibility of Educational Big Data in Professional Education in Atmospheric Science
下载PDF
导出
摘要 教育大数据的应用,即数据挖掘及大数据技术在教育中的应用,是教育研究中的热点问题。教育大数据目前在高校教育中的应用相对较少。而大气科学是一个包含物理、数学、化学和计算机编程的综合学科,这为研究数据的收集和分析提供了独特的优势条件。该研究将依托于高校教师与专家,通过调研和访谈等形式,了解教育大数据对大气科学专业教育的影响,并评估其可行性。研究结果对大气科学课程本身的建设具有重要的研究意义,对高校其他专业学科的建设也具有重要的启发性,为高校教育模式转变、学习方式变革的推进提供重要信息。 The application of big data in education, namely data mining and the use of big data technologies in education, is a hot issue in educational research. The educational big data is currently used relatively little in college education. Atmospheric science is a comprehensive discipline encompassing physics, mathematics, chemistry and computer programming, which provides a unique advantage for the collection and analysis of research data. This paper relies on university teachers and experts to understand the impact of educational big data on professional education in atmospheric science and assesses its feasibility through research and interviews. The research results have important research value for the construction of the atmospheric science curriculum and important inspirations for the construction of other professional disciplines in higher education, and also provide important information for the transformation of the educational approach and learning methods in higher education.
作者 周欣 肖天贵 原渊 肖国杰 李明刚 ZHOU Xin;XIAO Tian-gui;YUAN Yuan;XIAO Guo-jie;LI Ming-gang(College of Atmospheric Science,Chengdu University of Information Technology,Chengdu,Sichuan 610225,China;School of Educational Technology,Beijing Normal University,Beijing 100875,China)
出处 《教育教学论坛》 2020年第28期129-130,共2页 Education And Teaching Forum
基金 2020年度国家自然科学基金“印太暖池与中东太平洋协同作用对平流层水汽的影响”(41905037) 2017年度四川省精品在线开放课程“中期天气预报与短期气候预测”和2019—2021年度成都信息工程大学本科教学工程项目“《统计天气预报》精品在线开放课程建设项目”(BKJX2019042) 2019—2021年度成都信息工程大学本科教学工程项目“‘大气探测学’精品在线开放课程建设项目”(BKJX2019062)。
关键词 教育大数据 大气科学专业教育 影响和可行性研究 educational big data professional education in atmospheric science impact and feasibility study
  • 相关文献

参考文献5

二级参考文献83

  • 1Thomas S.Kuhn. The Structure of Scientific Revolutions(3rd Edition)[M]. Chicago: University of Chicago Press, 1996:10.
  • 2T.S.Kuhn.The Structure of Scientific Revolutions(2nd Edition) [M]. University of Chicago Press, 1970:88 and 41respectively.
  • 3Wikipedia, the free encyclopedia[EB/OL].http://en.wikipedia.org/wiki/Paradigm.
  • 4P.Thagard. Conceptual Revolutions[M]. Princeton, N J: Princeton University Press, 1992.
  • 5U.Friedman (2013). Big Data: A Short History[DB/OL].[2013-05-10].http://www.foreignpolicy.com/articles/2012/10/08/big_data?page=0,1.
  • 6Purcell,B.. Theemergence of "big data" Technology and Analytics. Journal of Technology Research [DB/OL].[2013-05-10].http:// www.aabri.com/manuscripts/121219.pdf.
  • 7C.Snijders,U.Matzat,U.-D.Reips. 'Big Data':Big Gaps of Knowledge in the Field of Intemet Science[J].International Journal of Intemet Science, 2012, (7) : 1-5.
  • 8Doug Laney. 3-D Data Management: Controlling Data Volume, Velocity and Variety [DB/OL].[2013-04-10].http://blogs.gartner.com/ doug-laney/files/2012/01/ad9g9-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.
  • 9IB M[DB/OL].[ 2013-05-10 ]http ://www-01 .ibm.com/ software/ data/b igdata/.
  • 10E.Quinn. The 6 Vs: The BI/Analytics Game Changes so Microsoft Changes Excel [DB/OL].[2013-05-10].http://www.esg-global.com/ blogs/the-6-vs-the-bianalytics-game-changes-so-microsoft-changes-excel/.

共引文献398

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部