期刊文献+

PbTaSe2拓扑表面态诱导的向列超导电性 被引量:1

Evidence for nematic superconductivity of topological surface states in PbTaSe2
原文传递
导出
摘要 通过平面内磁场转角的电阻和点接触谱的测量,作者发现拥有Dirac节点线的拓扑材料PbTaSe2中超导能隙存在明显的二重对称行为,低于PbTaSe2六角晶格结构的对称性,表明向列超导电性的存在.这种二重对称性会一直持续到表面超导的上临界场Hc2R,尽管体超导在体上临界场c2RH<<Hc2R以上已经被抑制.该结果表明二重对称行为起源于表面的向列超导电性.同时,在测量的精度范围内,磁场转角比热的数据也并没有观测到体超导的各向异性.值得注意的是, PbTaSe2的向列超导电性与拓扑超导候选材料CuxBi2Se3有所不同,后者的二重对称行为来自于体态超导.结合理论分析,本文认为PbTaSe2的向列超导电性可能起源于其拓扑表面态形成的拓扑超导态而不是体态超导的近邻效应,该理论预言PbTaSe2的表面超导会破坏时间反演对称.PbTaSe2的系统研究有助于进一步探索向列超导电性与拓扑超导之间的关系. Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics.In addition to the continuous electromagnetic gauge symmetry,an unconventional superconductor can break discrete symmetries simultaneously,such as time reversal and lattice rotational symmetry.In this work we report a characteristic in-plane 2-fold behaviour of the resistive upper critical field and point-contact spectra on the superconducting semimetal PbTaSe2 with topological nodal-rings,despite its hexagonal lattice symmetry(or D3 h in bulk while C3 v on surface,to be precise).The 2-fold behaviour persists up to its surface upper critical field Hc2R even though bulk superconductivity has been suppressed at its bulk upper critical field Hc2HC<<Hc2R,signaling its probable surface-only electronic nematicity.In addition,we do not observe any lattice rotational symmetry breaking signal from field-angle-dependent specific heat within the resolution.It is worth noting that such surface-only electronic nematicity is in sharp contrast to the observation in the topological superconductor candidate,CuxBi2Se3,where the nematicity occurs in various bulk measurements.In combination with theory,superconducting nematicity is likely to emerge from the topological surface states of PbTaSe2,rather than the proximity effect.The issue of time reversal symmetry breaking is also addressed.Thus,our results on PbTaSe2 shed new light on possible routes to realize nematic superconductivity with nontrivial topology.
作者 乐天 孙悦 金汇可 车利强 尹礼长 李洁 庞贵明 徐春强 赵凌霄 Shunichiro Kittaka Toshiro Sakakibara Kazushige Machida Raman Sankar 袁辉球 陈根富 许晓峰 李世燕 周毅 路欣 Tian Le;Yue Sun;Hui-Ke Jin;Liqiang Che;Lichang Yin;Jie Li;Guiming Pang;Chunqiang Xu;Lingxiao Zhao;Shunichiro Kittaka;Toshiro Sakakibara;Kazushige Machida;Raman Sankar;Huiqiu Yuan;Genfu Chen;Xiaofeng Xu;Shiyan Li;Yi Zhou;Xin Lu(Center for Correlated Matter and Department of Physics,Zhejiang University,Hangzhou 310058,China;Department of Physics and Mathematics,Aoyama Gakuin University,Sagamihara 252-5258,Japan;Department of Physics,Zhejiang University,Hangzhou 310027,China;Department of Applied Physics,Zhejiang University of Technology,Hangzhou 310023,China;Beijing National Laboratory for Condensed Matter Physics&Institute of Physics,Chinese Academy of Sciences.Beijing 100190,China;Institute for Solid State Physics(ISSP),The University of Tokyo,Kashiwa,Chiba 277-8581,Japan;Department of Physics,Ritsumeikan University,Kusatsu,Shiga 525-8577,Japan;Institute of Physics,Academia Sinica,Nankang,Taipei 11529,Taiwan,China;Zhejiang Province Key Laboratory of Quantum Technology and Device,Zhejiang University,Hangzhou 310027,China;Collaborative Innovation Center of Advanced Microstructures,Nanjing University.Nanjing 210093,China;Collaborative Innovation Center of Quantum Matter,Beijing 100084,China;State Key Laboratory of Surface Physics,Department of Physics,and Laboratory of Advanced Materials,Fudan University,Shanghai 200433,China;CAS Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100J90,China)
出处 《Science Bulletin》 SCIE EI CAS CSCD 2020年第16期1349-1355,M0003,共8页 科学通报(英文版)
基金 the National Key R&D Program of China(2016FYA0300402 and 2017YFA0303101) the National Natural Science Foundation of China(NSFC)(11674279 and 11374257) supported in part by the NSFC(U1732162 and 11974061) support from the Zhejiang Provincial Natural Science Foundation(LR18A04001) supported in part by the National Key Research and Development Program of China(2016YFA0300202) the National Natural Science Foundation of China(11774306) the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000) partly supported by KAKENHI(JP20H05164,19K14661,15H05883,18H01161,and JP17K05553)from JSPS ‘‘JPhysics”(18H04306) financial support provided by the Project Number MOST-108-2112-M-001-049-MY2 the Academia Sinica for the budget of AS-iMATE-109-13。
关键词 超导电性 时间反演对称 超导能隙 超导态 近邻效应 表面态 DIRAC 点接触 Nematic superconductivity Topological surface states Topological superconductor Point-contact spectroscopy
  • 相关文献

参考文献1

二级参考文献24

  • 1Bauer E and Sigrist M (ed) 2012 Non-Centrosymmetric Superconductors: Introduction and Overview (Berlin: Springer) vol 847 p 129.
  • 2Togano K, Badica P, Nakamori Y, Orimo S, Takeya H and Hirata K 2004 Phys. Rev. Lett. 93 247004.
  • 3Badica P, Kondo T, Kudo T, Nakamori Y, Orimo S and Togano K 2004 Appl. Phys. Lett. 85 4433.
  • 4Badica P, Kondo T and Togano K 2005 J. Phys. Soc. Jpn. 74 1014.
  • 5Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Grib- anov A, Seropegin Y, Noel H, Sigrist M and Rogl P 2004 Phys. Rev. Lett. 92 027003.
  • 6Fang L, Yang H, Zhu X Y, Mu G, Wang Z S, Shan L, Ren C and Wen H H 2009 Phys. Rev. B 79 144509.
  • 7Yuan H Q, Agterberg D F, Hayashi N, Badica P, Van- dervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006.
  • 8Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002.
  • 9Eguchi G, Peers D C, Kriener M, Yonezawa S, Bao G, Harada S, Inada Y, Zheng G Q and Maeno Y 2013 Phys. Rev. B 87 161203.
  • 10Harada S, Zhou J J, Yao Y G, Inada Y and Zheng G Q 2012 Phys. Rev. B 86 220502(R).

共引文献1

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部