摘要
无人机航拍的车辆受成像条件及成像距离等限制,所成影像面临背景干扰强、尺度小的缺陷,传统的目标检测算法无法满足高精度和实时的车辆检测。本文提出多尺度特征增强融合的实时航拍车辆检测算法。首先,提出一种相邻特征连接模块,将浅层的细节特征和相邻深层的语义特征进行融合,形成多尺度特征金字塔模型。然后,设计一种通道特征增强模块,使得网络抑制冗余特征的学习,增强特征之间的判别性。实验证明,提出的航拍车辆检测算法能够达到91.3%的准确率和每秒58帧的实时性,可以较好解决处于遮挡、阴影干扰等复杂环境下的车辆弱小目标定位问题。
Due to the limitation of imaging conditions and distance,most vehicles by unmanned aerial vehicle(UAV)photography are of small size and accompanied by complex background.It is difficult for tra-ditional object detection methods to achieve high detection accuracy in real-time.This paper proposes a real-time vehicle detection method based on multi-scale feature enhancement and fusion.Firstly,we fuse shallow detailed features and adjacent deep semantic features using an adjacent feature connection module(AFCM)and form a multi-scale feature pyramid model.Secondly,we propose a channel feature enhancment module(CFEM)to suppress redundant features and improve the discriminability of target features.The experimental results show that the proposed UAV vehicle detection method can achieve 91.3%accuracy with a real-time speed of 58 frames per second.It also solves the problems of small vehicle detection in complex backgrounds such as occlusion and shadow interference.
作者
杨建秀
谢雪梅
金星
杨文哲
石光明
YANG Jianxiu;XIE Xuemei;JIN Xing;YANG Wenzhe;SHI Guangniing(Xidian University,School of Artificial Intelligence,Xi'an 710071,China;Datong University,School of Physics and Electronics,Datong 037009,China)
出处
《中国体视学与图像分析》
2019年第4期298-305,共8页
Chinese Journal of Stereology and Image Analysis
基金
国家自然科学基金(No.61836008,61632019)。
关键词
深度学习
航拍车辆
多尺度特征增强
上下文信息
实时检测
deep learning
aerial vehicles
multi-scale feature enhancement
contextual information
real-time detection