期刊文献+

基于核估计迭代结构保持的图像盲复原方法

Blind image de-blurring based on structure preserving in iterative kernel estimation
下载PDF
导出
摘要 振铃抑制问题是鲁棒的模糊核估计中的关键问题。针对该问题,本文提出根据核估计迭代中潜在图像内振铃和真实图像结构的变化特性对二者进行区分。根据观察,潜在图像内的真实图像结构能够在迭代中稳定保持,振铃却随着核估计而不断变化。在本文所提方法中,我们利用迭代过程中潜在图像的序列来提取对于核估计有利的结构。实验结果表明,本文所提出方法相比现有的图像盲复原方法,在仿真图像数据和真实图像数据上表现更加优异,算法更加鲁棒。 Ringing suppression is a key issue for robust blur kernel estimation. On this problem,this paper propose to distinguish ringing effect and actual structures based on their characteristics during iteration. According to our observation,real structures in a latent image can be maintained stably while the ringing keeps changing when the kernel being optimized in iterations. We exploit gradients during the iteration sequence as the principle to extract favorable image structures for accurate kernel estimation. Extensive experimental studies demonstrate that the proposed method is more robust and performs favorably against the state-of-the-art image deblurring methods on both synthesized and natural images.
作者 白雪 张艳宁 朱宇 孙瑾秋 BAI Xue;ZHANG Yanning;ZHU Yu;SUN Jinqiu(School of Computer Science and Engineering,Northwestern Polytechnical University,Xian 710000,China;School of Astronautics,Northwestern Polytechnical University,Xian 710000,China)
出处 《中国体视学与图像分析》 2019年第4期314-324,共11页 Chinese Journal of Stereology and Image Analysis
基金 国家自然科学基金(61901384,61871328)。
关键词 图像盲复原 体视学 模糊核估计 结构保持 潜在图像序列 图像梯度子集 blind image deburring stereology blur kernel estimation structure remains latent iteration sequence image gradient subset
  • 相关文献

参考文献2

二级参考文献28

  • 1Chen F, Ma J L. An empirical identification method of gaussian blur parameter for image deblurring [ J]. IEEE Transactions on Signal Processing, 2009, 57 (7) : 2467 - 2478.
  • 2Cai Jianfeng, Ji Hui, Lilt Chaoqiang, et al. Blind motiondeblurring from a single image using sparse approximation [ C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition . IEEE Computer Society,2009 : 104 -111.
  • 3Hansen P C, Nagy J G, Oleary D P. Deblurring images, matrices, spectra, and filtering[ M ]. Society for Industri- al and Applied Mathematics Philadelphia, 2006.
  • 4Huang Yumei, Ng M K, Wen Youwei. Fast image resto- ration methods for impulse and Gaussian noises removal [J]. IEEE Signal Processing Letters, 2009, 16(6): 457 -460.
  • 5Boracchi G, Foi A. Uniform motion blur in Poissonian noise: blur/noise tradeoff[ J]. IEEE Transactions on Im- age Processing, 2011, 20(2) : 592 -598.
  • 6Zhang Haichao, Zhang Yanning. Sparse representation based iterative incremental image deblurring [ C ]//2009 16th IEEE International Conference on Image Processing. 2009 : 1293 - 1296.
  • 7Bronstein M M, Bronstein M, Zibulevsky M. Blind de- convolution of images using optimal sparse representation [J]. IEEE Transactions on Image Processing, 2005, 14 (6) : 726 -735.
  • 8Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration[ J]. IEEE Transactions on Image Processing, 2008, 17 ( 1 ) :53 - 69.
  • 9Yang J. A class of fast algorithms for total variation image reconstruction[ D ]. Nanjing: Nanjing university, 2009.
  • 10Lagendijk R L, Biemond J. Iterative identification and restoration of images[ M ]. Academic Press, 2005.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部