期刊文献+

微孔板图片微孔中心的精确定位方法

Method for Precise Positioning of Microwell Center of Microplate Photo
下载PDF
导出
摘要 微孔板是一种多用途的检测试验板,在临床医学,化学试验,兽医的试剂检测等方面都有广泛的应用。这套自然拍照的微孔板图片中微孔中心的精确定位方法正是为微孔板进行智能化升级,通过图像处理技术与直线拟合方法的结合,成功在图片中实现微孔板的矩形边界的精确定位。在此基础上,根据实体的相应比例,可以模糊找出圆孔中心,再利用霍夫函数调整各个圆孔中心,以实现各个圆孔中心的精确定位,从而实现在自然拍照下,微孔板圆孔中心的精确定位。这将解决在微孔板实验中对孔溶液的检测和统计的繁琐、低效率等问题. Microplate is a multi-purpose test board,which is widely used in clinical medicine,chemical test,veterinary reagent detection and so on.The precise positioning method of micro-hole center in the microporous plate in this natural photo shoot is an intelligent upgrade for the microporous plate.Through the combination of image processing technology and linear fitting method,the precise positioning of the rectan⁃gular boundary of the microporous plate is successfully realized in the image.On this basis,according to the corresponding proportion in the entity,can fuzzy identify round hole center,each round hole center using Hough transform function adjustment,in order to realize the accurate location of every round hole center,so as to realize under natural pictures,the accurate positioning of MPP round hole center..This will solve the problem of the detection and statistics of pore solution in the microporous plate experiment.
作者 郭玉彬 曾晓银 吴少乾 李西明 王璇 GUO Yu-bin;ZENG Xiao-yin;WU Shao-qian;LI Xi-ming;WANG Xuan(College of Mathematics and Informatics,South China Agricultural University,Guangzhou 510642)
机构地区 华南农业大学
出处 《现代计算机》 2020年第17期42-45,50,共5页 Modern Computer
基金 国家重点研发计划:畜禽重要病原耐药性检测与控制技术研究(No.2016YFD0501300) 国家基金海外合作重点项目:质粒协助沙门菌的适应性及其机制研究(No.30520103918) 2018年广东省农业厅省级乡村振兴战略专项项目(粤农计[2018]54号)。
关键词 微孔板 矩形识别 圆孔定位 图像分割 Microplate Rectangle Recognition Circular Hole Orientation Image Segmentation
  • 相关文献

参考文献3

二级参考文献35

  • 1Mortensen EN. Barrett W A. Intelligent scissors for image composition[CJ II Computer Graphics Proceedings. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 1995: 191-198.
  • 2Chuang Y Y. Curless B. Salesin 0 H. et al. A Bayesian approach to digital matting[CJ IIProceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2001.2: 264-271.
  • 3Boykov Y.Jolly M. Interactive graph cuts for optimal boundary and region segmentation of objects in N -0 images[CJ IIProceedings of the 8th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press. 2001. 1: 105-112.
  • 4Rother C. Kolmogorov V. Blake A. "GrabCut": interactive foreground extraction using iterated graph cuts[CJ II Computer Graphics Proceedings. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 2004: 309-314.
  • 5Li Y. SunJ. Tang C K. et al . Lazy snapping[CJ IIComputer Graphics Proceedings. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 2004: 303-308.
  • 6Grady L. Random walks for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006.28(11): 1768-1783.
  • 7Adobe Photoshop 7. 0 user guide[M]. SanJose: Adobe Systems Incorporated. 2002.
  • 8Rother C. Minka T. Blake A. et al. Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs[CJ IIProceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2006. 1: 993-1000.
  • 9Mukherjee L. Singh V. Dyer C R. Half-integrality based algorithms for cosegmentation of images[CJ II Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2009: 2028-2035.
  • 10Hochbaum D S. Singh V. An efficient algorithm for co-segmentation[CJ IIProceedings of the 12th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press. 2009: 269-276.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部