期刊文献+

求解最优Steiner树的前驱编码粒子群算法 被引量:1

A predecessor-encoding-based particle swarm optimizer for least-cost Steiner tree problem
下载PDF
导出
摘要 本文针对最小代价Steiner树问题,提出一种前驱编码粒子群算法。为了避免环的产生,粒子向量采用前驱节点编码表示;重新设计粒子飞行实现方式,引入了基于邻接矩阵的“开发”算子以及基于剔除相同适应度值粒子策略的“勘探”算子。仿真实验表明,本文提出的算法能有效解决Steiner树问题,并且在多数测试算例上的表现优于已有算法。 A predecessor-encoding-based particle swarm optimizer for least-cost Steiner tree problem is proposed.For avoiding the production of loop-topo,each particle-vector is represented in the form of predecessor-encoding.The implementation of particle flying is redesigned through introducing an adjacency-matrix-based exploitation operator and an exploration operator based on removing the particles with the same fitness values.The experimental simulation shows that the proposed algorithm is capable of obtaining high quality Steiner tree topology and surpassing most existing Steiner-tree-algorithms in terms of tree-cost.
作者 刘庆 李星 王洋 李迎 LIU Qing;LI Xing;WANG Yang;LI Ying(School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China;Graduate School of Engineering,Nagoya University,Nagoya 464-8603,Japan;School of Computer Science,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《西安理工大学学报》 CAS 北大核心 2020年第2期221-229,共9页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(61502385)。
关键词 粒子群算法 STEINER树 前驱编码 优化 particle swarm optimizer Steiner tree predecessor-based encoding scheme optimization
  • 相关文献

参考文献1

二级参考文献24

  • 1徐宁,洪先龙.超大规模集成电路物理设计理论与算法【M].北京:清华大学出版社,2009.
  • 2Coulston C S. Constructing exact octagonal Steiner minimal tree[C] /lProceedings of the 13th ACM Great Lakes Sympo?siurn on VLSI. New York: ACM Press, 2003: 1-6.
  • 3Zhu Q, Zhou H, ling T, et al. Spanning graph-based nonrecti?linear Steiner tree algorithms[J]. IEEE Transactions on Com?puter-Aided Design of Integrated Circuits and Systems, 2005, 24 (7): 1066-1075.
  • 4Garey M R, Johnson D S. The rectilinear Steiner tree problem is NP-complete[J]. SIAM Journal on Applied Mathematics, 1977,32(4): 826-834.
  • 5Liu G G, Chen G L, Guo W Z. DPSO based octagonal Steiner tree algorithm for VLSI routing[C] /lProceedings of the 5th International Conference on Advanced Computational Intelli?gence. Los Alamitos: IEEE Computer Society Press, 2012: 383-387.
  • 6Arora T, Moses M E. Ant colony optimization for power effi?cient routing in Manhattan and non-Manhattan VLSI architec?tures[C] /lProceedings of IEEE Swarm Intelligence Sympo?sium. Los Alamitos: IEEE Computer Society Press, 2009: 137-144.
  • 7Van J T. Timing-driven octilinear Steiner tree construction based on Steiner-point reassignment and path reconstruction[J]. ACM Transactions on Design Automation of Electronic Sys?terns, 2008, 13 (2): Article No. 26.
  • 8Samanta T, Rahaman H, Dasgupta P. Near-optimal V-routed delay trees in nanometric interconnect design[J]. lET Com?puters & Digital Techniques, 2011, 5 (1): 36-48.
  • 9Liu C H, Kuo S Y, Lee D T, et al. Obstacle-avoiding rectilinear Steiner tree construction: a Steiner-point-based algorithm[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31 (7): 1050-1060.
  • 10Chow W K, Li L, Young E F Y, et al. Obstacle-avoiding recti?linear Steiner tree construction in sequential and parallel ap?proach[J]. Integration, the VLSI Journal, 2014, 47(1): 105-114.

共引文献1

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部