期刊文献+

结合MRI多模态信息和3D-CNNs特征提取的脑肿瘤分割研究 被引量:5

Brain Tumor Segmentation Based on MRI Multimodal Information and 3D-CNNs Feature Extraction
下载PDF
导出
摘要 目的探究结合MRI多模态信息和3D-CNNs特征提取对于脑肿瘤分割的价值。方法分析相比于未加入多模态3D-CNNs特征的方法,并对比2D-CNNs特征方法和3D-CNNs特征方法分割的结果,主要参考dice系数,假阳性率和sensitibity。结果在加入多模态3D-CNNs特征之后,患者的dice系数均有不同程度的提高,sensitibity系数也有改变,假阳性率显著得到改善;加上多模态3D-CNNs特征提取后,dice系数变为(88.26±4.65)%,显著优于多模态2D-CNNs特征提取的(83.67±4.22)%。而多模态2D-CNNs特征提取的运用甚至比单独使用灰度邻域结合haar小波低频系数的分割结果。结论基于多模态3D-CNNs特征提取的MRI脑肿瘤分割准确度高,适应不同患者不同模态之间的多变性和差异性,值得参考。 Objective Explore the value of combining MRI multimodal information and 3D-CNNs feature extraction for brain tumor segmentation.Methods Compared with the method of adding multimodal 3D-CNNs,and comparing the results of 2D-CNNs feature method and 3D-CNNs feature method,the main reference is the dice coefficient,false positive rate and sensitibity.Results After adding the multimodal 3D-CNNs features,the patient’s dice coefficient increased to varying degrees,the sensitibity coefficient also changed,and the false positive rate was significantly improved.After the multimodal 3D-CNNs feature extraction,the dice coefficient became (88.26±4.65)%,significantly better than the multimodal 2D-CNNs feature extraction (83.67±4.22)%.The application of multi-modal 2D-CNNs feature extraction is even more than the segmentation result of the haar wavelet low-frequency coefficient combined with the gray neighborhood.Conclusion MRI brain tumor segmentation based on multimodal 3D-CNNs feature extraction has high accuracy and adapts to the variability and difference between different modes of different patients.It is worthy of reference.
作者 杨新焕 张勇 YANG Xin-huan;ZHANG Yong(Department of Radiology of Zhengzhou people's Hospital,Zhengzhou 467000,Henan Province,China)
出处 《中国CT和MRI杂志》 2020年第9期4-6,23,共4页 Chinese Journal of CT and MRI
基金 2016年河南省医学科技攻关计划项目(编号:201602030)。
关键词 3D-CNNS特征提取 MRI多模态信息 脑肿瘤分割 3D-CNNs Feature Extraction MRI Multimodal Information Brain Tumor Segmentation
  • 相关文献

参考文献9

二级参考文献36

  • 1Wong K.Medical image segmentation:methods and applications in functional imaging.Handb Biomed Image Anal Segmentation Models Part B,2005 ;2:111-182.
  • 2Jiang Jun,Wu Yao,Huang Meiyan,at al.3D brain tumor segmentation in multimodal MR i-mages based onlearning population-and patient-specific feature sets.Computerized Medical Imaging and Graphics,2013 ;27:512-521.
  • 3Gordillo N,Montseny E,Sobrevilla P.State of the art survey on MRI brain tumor segmentation.Magnetic Resonance Imaging,2013 ; 31:1426-1438.
  • 4Duda R O,Hart P E,Stork D G.Pattern classification,Second Edition.John Wiley & Sons,Inc,2004.
  • 5Atlas S W.Magnetic resonance imaging of the brain and spine.Lippincott Williams & Wilkins,2009.
  • 6LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition.Proc IEEE,1998; 86 (11):2278-2324.
  • 7Hinton G E,Osindero S,Teh Y.A fast learning algorithm for deep belief nets.Neural Computation,2006 ; 18:1527-1554.
  • 8Farabet C,Couprie C,Najman L,et al.Learning hierarchical features for scene labeling.Transactions on Pattern Analysis and Machine Intelligence,2013 ;35(8):1915-1929.
  • 9Krizhevsky A,Sutskever I,Hinton G.ImageNet classification with deep convolutional neural networks.NIPS,2012.
  • 10Mohamed A,Sainath T N,Dahl G E,et al.Deep belief networks using discriminative features for phone recognition.Acoustics,Speech and Signal Processing (ICASSP),2011 IEEE International Conference on,IEEE,2011:5060-5063.

共引文献143

同被引文献38

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部