期刊文献+

石墨烯负载纳米二硫化钴的制备及其在锂离子电池方面的应用研究 被引量:2

Preparation of graphene loaded nano-sized CoS and its application in lithium-ion batteries
下载PDF
导出
摘要 采用二次水热法将纳米二硫化钴负载于石墨烯上,并通过结构表征和电化学性能测试,探讨了纳米二硫化钴/石墨烯材料作为锂离子电池负极的性能。电容量测试结果表明:在电流密度为100 mA/g条件下,二硫化钴/石墨烯复合材料的首周充放电容量分别为1 610 mA·h/g和774 mA·h/g,测算出的库伦效率为48.1%;循环性能测试结果表明:经过50次循环测算后的复合材料的放电比容量为302 m A·h/g,容量保持率为33.4%;倍率性能测试结果表明:当电流密度回复到100 mA/g时,复合材料的比容量恢复至550 mA·h/g。实验制备的纳米二硫化钴/石墨烯复合材料在锂电池负极的应用上表现出了优异的循环性能和倍率性能。 Graphene loaded nano-sized CoS2 were prepared by secondary hydrothermal method.The properties of nano-sized CoS2/GP composites as anode materials for lithium ion batteries were studied by structural characterization and electrochemical performance testing.The capacitance test results showed that the first cycle charge-discharge capacity of CoS2/GP composite were 1 610 mA·h/g and 774 mA·h/g respectively at 100 mA/g current density.And the calculated coulomb efficiency was 48.1%.The cycle performance test results showed that the specific discharge capacity was 302 mA·h/g and the capacity retention rate was 33.4% after 50 times cycles.The rate performance test results showed that when the current density teturned to 100 mA/g,the specific capacity restored to 550 mA·h/g.CoS2/GP composites anode exhibited excellent cycling and rate performance.
作者 董丽坤 贾永卿 Dong Likun;Jia Yongqing(Wuhai Vocational and Technical College Inner Mongolia Autonomous Region Wuhai 016000,China)
出处 《无机盐工业》 CAS CSCD 北大核心 2020年第7期55-58,共4页 Inorganic Chemicals Industry
关键词 纳米CoS2 石墨烯 锂离子电池 电化学性能 nano-sized CoS2 grapheme lithium battery electrochemical
  • 相关文献

参考文献5

二级参考文献73

  • 1邹鹏,石文荣,杨书华,黄德欢.石墨烯的化学气相沉积法制备及其表征[J].材料科学与工程学报,2014,32(2):264-267. 被引量:25
  • 2贺慧,程璇,张颖.锂离子电池负极材料Li_4Ti_5O_(12)的结构和性能[J].材料研究学报,2007,21(1):82-86. 被引量:15
  • 3RUI X H, TAN H T, YAN Q Y. Nanostructured metal sulfides for energy storage[J].Nanoscale, 2014, 6 (17): 9889-9924.
  • 4TAO F, ZHAO Y Q, ZHANG G Q, et al. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors[J]. Electrochemistry Communications, 2007, 9 (6): 1282-1287.
  • 5BAO S J, LI C M, GUO C X, et al. Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors[J]. Journal of Power Sources, 2008, 180 (1): 676-681.
  • 6ZHANG L, WU H B, LOU X W. Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors[J]. Chemical Communications, 2012, 48 (55): 6912-6914.
  • 7WAN H Z, JI X, JIANG J J, et al. Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors[J]. Journal of Power Sources, 2013, 243: 396-402.
  • 8YU J W, WAN H Z, JIANG J J, et al. Activation mechanism study of dandelion-like CogSs nanotubes in supercapacitors[J]. Journal of the Electrochemical Society, 2014, 161 (6): A996-A1000.
  • 9LIU S G, MAO C P, NIU Y B, et al. Facile synthesis of novel networked ultra long cobalt sulfide nanotubes and its application in supercapacitors[J]. Acs Applied Materials & Interfaces, 2015, 46 (7): 25568-25573.
  • 10LIU B, WEI S A, X1NG Y, et al. Complex surfactant-assisted hydrothermal synthesis and properties of hierarchical worm-like cobalt sulfide microtubes assembled by hexagonal nanoplates[J]. Chemistry A: European Journal, 2010, 16 (22): 6625-6631.

共引文献15

同被引文献36

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部