期刊文献+

钒掺杂二氧化钛光催化活性研究 被引量:3

Photocatalytic activity of vanadium doped titanium dioxide
下载PDF
导出
摘要 二氧化钛凭借优异的光催化性能,越来越受到人们的广泛关注和重视。以钛酸四丁酯为原料,利用水解-水热-干燥/煅烧工艺制备得到未掺杂TiO2光催化剂和掺钒TiO2光催化剂,利用其对甲基橙溶液的降解率做了比较分析。结果表明,以钛酸四丁酯为原料,采用溶胶-凝胶法制备钒掺杂TiO2光催化剂是可行的。制备V/TiO2产品的最佳工艺条件:钒钛质量比为6∶100、水热温度为160℃、水热时间为12 h,120℃下干燥14 h。紫外光照射条件下,甲基橙光催化降解效率达到99.10%,降解时间小于45 min。 TiO2 has attracted more and more attention due to its excellent photocatalytic performance.Undoped TiO2 photocatalyst and vanadium-doped TiO2 photocatalyst were prepared by hydrolysis-hydrothermal-drying/calcination process using tetrabutyl titanate as raw material.The degradation rate of methyl orange solution was compared and analyzed.The results showed that it was feasible to prepare vanadium-doped TiO2 photocatalyst by sol-gel method using tetrabutyl titanate as raw material.The optimal process conditions for V/TiO2 products was as follows:vanadium-titanium mass ratio was 6∶100,hydrothermal temperature was 160℃,hydrothermal time was 12 h and drying at 120℃for 14 h.Under ultraviolet light irradiation,the photocatalytic degradation efficiency of methyl orange reached 99.10%,and the degradation time was less than45 min.
作者 张树立 徐旭鹏 陈书锐 刘黔蜀 王本菊 Zhang Shuli;Xu Xupeng;Chen Shurui;Liu Qianshu;Wang Benju(Panzhihua College,Panzhihua 617000,China;College of Science and Technology,Panzhihua University)
出处 《无机盐工业》 CAS CSCD 北大核心 2020年第8期93-97,共5页 Inorganic Chemicals Industry
基金 射频等离子体生产纳米金红石型二氧化钛工艺技术研究(2019YJ0685)。
关键词 二氧化钛 光催化 掺杂 降解率 titaniumdioxide photocatalysis doping degradation rate
  • 相关文献

参考文献4

二级参考文献39

  • 1张美红,丁士文,王振兴,张玉卓.化学自组装合成Sn掺杂的纳米TiO_2介孔材料及其光催化性能[J].中国科学(B辑),2005,35(3):206-211. 被引量:10
  • 2钟超阳,潘海波,郭龙发,黄金陵.四磺基酞菁锌敏化TiO_2的原位自组装合成及可见光光催化[J].光谱学与光谱分析,2007,27(11):2329-2332. 被引量:9
  • 3Qian W. , Greaney P. A. , Fowler S. , Chiu S. K. , Goforth A. M. , Jiao J. , ACS Sustainable Chem. Eng. , 2014, 2(7), 1802-1810.
  • 4Wang W. S. , Wang D. H. , Qu W. G. , Lu L. Q. , Xu A. W. , J. Phys. Chem. C, 2012, 116(37), 19893-19901.
  • 5Wu Y. , Dong Y. , Xia X. , Liu X. , Li H. , Applied Surface Science, 2016, 364, 829-836.
  • 6Zhang J. , Xu Q. , Feng Z. , Li M. , Li C. , Angew. Chem. Int. Ed. , 2008, 47(9), 1766-1769.
  • 7Zhang Y. , Zhou Z. , Chen T. , Wang H. , Lu W. , J. Environ Sci. , 2014, 26(10), 2114-2122.
  • 8Fung A. K. M. , Chiu B. K. W. , Lam M. H. W. , Water Res. , 2003, 37(8), 1939-1947.
  • 9Kim Y. J. , Gao B. , Han S. Y. , Jung M. H. , Chakraborty A. K. , Ko T. , Lee C. , Lee W. I. , J. Phys. Chem. C, 2009, 113(44), 19179-19184.
  • 10Liu Y. , Yu L. , Wei Z. G. , Pan Z. C. , Zhou Y. D. , Xie Y. H. , Chem. J. Chinese Universities, 2013, 34(2), 434-440.

共引文献15

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部