期刊文献+

外延生长范德华金属-半导体NbS2/MoS2异质结用于增强晶体管和光电探测器性能 被引量:4

Epitaxial growth of metal-semiconductor van der Waals heterostructures NbS2/MoS2 with enhanced performance of transistors and photodetectors
原文传递
导出
摘要 基于过渡金属硫族化合物的二维材料异质结,由于其在下一代高性能集成光电子器件中的潜在应用而备受关注.虽然目前异质结制备很广泛,但是外延生长具有干净锐利界面的原子级别厚度金属-半导体异质结仍然备受挑战.另外,基于金属-半导体异质结的光电性能还鲜有研究.这里,我们报道了高质量垂直金属-半导体异质结的合成,其中金属性质的单层NbS2外延生长于单层MoS2表层.使用NbS2作为电极接触的MoS2晶体管,其迁移率和电流开关比相对于Ti/Au接触的MoS2晶体管分别提升了6倍和2个数量级.另外,基于NbS2作为电极接触的MoS2光电探测器,其响应时间和光响应可以分别提升至少30倍和20倍.本工作通过简单的化学气相沉积(CVD)方法制备的原子级别厚度的金属-半导体异质结和二维金属材料在接触方面的作用为其在光电子器件中的应用奠定了基础. Two-dimensional(2D)heterostructures based on layered transition metal dichalcogenides(TMDs)have attracted increasing attention for the applications of the nextgeneration high-performance integrated electronics and optoelectronics.Although various TMD heterostructures have been successfully fabricated,epitaxial growth of such atomically thin metal-semiconductor heterostructures with a clean and sharp interface is still challenging.In addition,photodetectors based on such heterostructures have seldom been studied.Here,we report the synthesis of high-quality vertical NbS2/MoS2metallic-semiconductor heterostructures.By using NbS2as the contact electrodes,the field-effect mobility and current on-off ratio of MoS2can be improved at least 6-fold and two orders of magnitude compared with the conventional Ti/Au contact,respectively.By using NbS2as contact,the photodetector performance of MoS2is much improved with higher responsivity and less response time.Such facile synthesis of atomically thin metal-semiconductor heterostructures by a simple chemical vapor deposition strategy and its effectiveness as ultrathin 2D metal contact open the door for the future application of electronics and optoelectronics.
作者 张鹏 边策 叶家富 程宁燕 王兴国 江华宁 魏怡 张亦玮 杜轶 鲍丽宏 胡伟达 宫勇吉 Peng Zhang;Ce Bian;Jiafu Ye;Ningyan Chen;Xingguo Wang;Huaning Jiang;Yi Wei;Yiwei Zhang;Yi Du;Lihong Bao;Weida Hu;Yongji Gong(School of Materials Science and Engineering,Beihang University,Beijing 100191,China;Institute of Physics&University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China;State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;Institute for Superconducting and Electronic Materials(ISEM),Australian Institute for Innovation Materials(AIIM),University of Wollongong,NSW 2522,Australia;State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China;Beihang-UOW Joint Research Centre and School of Physics,Beihang University,Beijing 100191,China;Songshan Lake Materials Laboratory,Dongguan 523803,China)
出处 《Science China Materials》 SCIE EI CSCD 2020年第8期1548-1559,共12页 中国科学(材料科学(英文版)
基金 financially supported by the National Key R&D Program of China(2018YFA0306900 and 2018YFA0305800) the National Natural Science Foundation of China(51872012)。
  • 相关文献

参考文献1

共引文献1

同被引文献34

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部