期刊文献+

基于遗传模拟退火算法的药品零售大数据关联规则挖掘

Association Rules Mining of Drug Retail Big Data Based on Genetic Simulated Annealing Algorithm
下载PDF
导出
摘要 针对药品零售大数据信息,提出一种基于遗传模拟退火算法的关联规则挖掘改进算法。首先以遗传算法为主体,模拟退火算法作为其辅助,在遗传算法选择操作、交叉运算和变异运算中融入模拟退火算法,实现对算法的设计;然后运用Python语言实现了算法,并通过对药品零售大数据关联规则挖掘,发现药品零售大数据之间的关联,有效地量化了药品之间的相关程度;最后对改进算法进行有效性和可行性测试。仿真实验表明,相比遗传算法,该算法的挖掘速快,挖掘质量高,有效地提高品零售大数据关联规则挖掘的性能。 Aiming at the big data information of drug retail,an improved association rule mining algorithm based on genetic simulated annealing algorithm is proposed.Firstly,genetic algorithm is taken as the main body and simulated annealing algorithm is used as its auxiliary.Simulated annealing algorithm is integrated into the selection operation,crossover operation and mutation operation of genetic algorithm to realize the design of the algorithm.Then,the algorithm was implemented with Python language.Through mining association rules of big data of drug retail,the association between big data of drug retail was found,and the correlation degree between drugs was effectively quantified.Finally,the validity and feasibility of the improved algorithm are tested.Simulation experiment shows that compared with genetic algorithm,this algorithm can mine fast and high quality,and effectively improve the performance of big data association rules mining in retail.
作者 盛魁 马健 曹岩 卞显福 Sheng Kui;Ma Jian;Cao Yan;Bian Xianfu(Bozhou Institute of Chinese Medicine,Anhui Academy of Chinese Medicine;Department of Information Engineering,Bozhou Vocational and Technical College,Bozhou,Anhui 236800,China;School of Software,University of Science and Technology China,Heifei,Anhui 230051,China)
出处 《黑龙江工业学院学报(综合版)》 2020年第6期60-65,共6页 Journal of Heilongjiang University of Technology(Comprehensive Edition)
基金 安徽省高校优秀青年人才支持计划重点项目(编号:gxyqZD2016529) 安徽高校自然科学研究重点项目(编号:KJ2016A493,KJ2018A0887) 亳州市名师带高徒项目(编号:亳人社秘〔2019〕29号) 亳州市技能大师工作室项目(编号:亳人社秘〔2019〕30号)。
关键词 关联规则 药品零售 大数据 遗传模拟退火算法 association rules drug retail big data genetic simulated annealing algorithm
  • 相关文献

参考文献7

二级参考文献76

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部