摘要
Sodium ion batteries and capacitors have demonstrated their potential applications for next-generation low-cost energy storage devices.These devices’s rate ability is determined by the fast sodium ion storage behavior in electrode materials.Herein,a defective TiO2@reduced graphene oxide(M-TiO2@rGO)self-supporting foam electrode is constructed via a facile MXene decomposition and graphene oxide self-assembling process.The employment of the MXene parent phase exhibits distinctive advantages,enabling defect engineering,nanoengineering,and fluorine-doped metal oxides.As a result,the M-TiO2@rGO electrode shows a pseudocapacitance-dominated hybrid sodium storage mechanism.The pseudocapacitance-dominated process leads to high capacity,remarkable rate ability,and superior cycling performance.Significantly,an M-TiO2@rGO//Na3 V2(PO4)3 sodium full cell and an M-TiO2@rGO//HPAC sodium ion capacitor are fabricated to demonstrate the promising application of M-TiO2@rGO.The sodium ion battery presents a capacity of 177.1 mAh g-1 at 500 mA g-1 and capacity retention of 74%after 200 cycles.The sodium ion capacitor delivers a maximum energy density of 101.2 Wh kg-1 and a maximum power density of 10,103.7 W kg-1.At 1.0 A g-1,it displays an energy retention of 84.7%after 10,000 cycles.
基金
supported by the National Natural Science Foundation of China(51702063,51672056)
Natural Science Foundation of Heilongjiang(LC2018004)
China Postdoctoral Science Foundation(2018M630340,2019T120254)
the Fundamental Research Funds for the Central University。