摘要
为改进完善通信辐射源识别课题,引入深度学习作为分类方法。为探究深度学习对辐射源识别的作用,介绍了与通信辐射源识别相关的深度学习理论,从辐射源个体识别与调制方式识别两个方面,对基于深度学习的通信辐射源识别技术的研究现状进行综述,并详细分析了基于深度学习的通信辐射源识别技术的主要难点问题,同时讨论了发展方向和解决方案。
In order to improve and perfect the communication radiation source identification problem,deep learning is introduced as a classification method.In order to explore the effect of deep learning on radiation source identification,the deep learning theory related to communication radiation source identification is introduced.From the aspects of individual radiation source recognition and modulation mode recognition,the research status of communication radiation source recognition technology based on deep learning is reviewed.The main difficulties of communication radiation source identification technology based on deep learning are analyzed in detail.At the same time,the development direction and solutions are discussed.
作者
陈一鸣
朱磊
俞璐
姚艳艳
张海波
CHEN Yi-ming;ZHU Lei;YU Lu;YAO Yan-yan;ZHANG Hai-bo(Army Engineering University of PLA,Nanjing Jiangsu 210007,China)
出处
《通信技术》
2020年第8期1846-1850,共5页
Communications Technology
关键词
深度学习
辐射源识别
个体识别
调制方式识别
deep learning
radiation source identification
individual identification
modulation recognition