期刊文献+

基于剪枝算法解决多处理机调度问题的算法研究 被引量:1

Algorithm research of solving multiprocessor scheduling problem based on pruning algorithm
下载PDF
导出
摘要 针对当前算法求解多处理机调度问题的不足,从剪枝策略的角度提出了一种笨人算法。笨人算法的思路是:不断排除最差解,直到剩下唯一解。这种剪枝算法至少保证当前的选择不是最差的,并且对计算过程的最大复杂度作了一个估计。经过实验分析,对于N×N的MSP,多数情况下,笨人算法比贪心算法、遗传算法、差分进化算法的表现更为稳定和优秀,是一种有效的算法,也为相关问题的研究提供了一种新的思路。 To overcome the shortcomings of current algorithms in solving multiprocessor scheduling problems,this paper proposed a fool algorithm from the perspective of pruning strategy.The idea of the fool algorithm always excluded the worst solution until there was only one solution left.This pruning algorithm ensured that the current selection was not the worst and estimated the maximum complexity of the calculation process.Through experimental analysis,for the N × N MSP,in most cases,the performance of the fool algorithm is more stable and excellent than greedy algorithm,genetic algorithm and differential evolution algorithm.It is an effective algorithm,and also provides a new way of thinking for the research of related problems.
作者 李博 张晓 颜靖艺 Li Bo;Zhang Xiao;Yan Jingyi(School of Computer Science,Northwestern Polytechnical University,Xi’an 710129,China;School of Management,Northwestern Polytechnical University,Xi’an 710129,China;Ministry of Communications Key Laboratory of Big Data Storage&Management,Xi’an 710129,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第8期2386-2389,共4页 Application Research of Computers
基金 国家重点研发计划资助项目(2018YFB1003403,2018YFB1004401)。
关键词 多处理机调度问题 剪枝算法 笨人算法 贪心算法 遗传算法 差分进化算法 multiprocessor scheduling problem pruning algorithm fool algorithm greedy algorithm genetic algorithm differential evolution algorithm
  • 相关文献

参考文献7

二级参考文献65

  • 1孙明华,崔海涛,温卫东.基于精英保留遗传算法的连续结构多约束拓扑优化[J].航空动力学报,2006,21(4):732-737. 被引量:13
  • 2恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460. 被引量:113
  • 3申晓宁,郭毓,陈庆伟,胡维礼.一种子群体个数动态变化的多目标优化协同进化算法[J].控制与决策,2007,22(9):1011-1016. 被引量:13
  • 4Potter M A,De Jong K A.A cooperative coevolutionary approach to function optimization[C]//LNCS 866:Proc of the Parallel Problem Solving from Nature-PPSN III,Int’l Conf on Evolutionary Computation.Berlin:Springer-Verlag,1994:249-257.
  • 5Tan K C,Yang Y J,Goh C K.A distributed cooperative coevolutionary algorithm for multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2006,10(5):527-549.
  • 6Keerativuttitumrong N,Chaiyaratana N,Varavithya V.Multiobjective cooperative coevolutionary genetic algorithm[C]//LNCS 2439:Proc of Parallel Problem Solving From Nature VII(PPSN’02).Berlin,Germany:Springer-Verlag,2002:288-297.
  • 7Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 8Lorio A W,Li X D.A cooperative coevolutionary multiobjective algorithm using non-dominated sorting[C]//Proc of the Genetic and Evolutionary Computation Conf,Part I.Washington:Springer-Verlag,2004:537-548.
  • 9Zitzler E,Thiele L.Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
  • 10Zitzler E,Deb K,Thiele L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evolutionary Computation,2000,8(2):173-195.

共引文献205

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部