期刊文献+

基于分割树的移动机器人立体匹配研究

Research on stereo matching of mobile robot based on segment tree
下载PDF
导出
摘要 针对移动机器人在作业时低纹理、重复纹理、反光的环境,提出了一种基于分割树的移动机器人立体匹配方法,提高深度恢复的计算速度和精度。首先针对移动机器人作业环境对图像进行预处理,减小因光线变化的影响;然后采用最小生成树对图像像素进行加权聚合,通过分割树进行优化同时分割图像;再对图像进行遮挡处理和视差精化,恢复遮挡区域和未提供视差的图像边缘区域的深度,提高深度恢复的精度。最后进行对比实验,在室内场景下新方法计算速度比ST-2方法提高了187.140%,能够为移动机器人提供语义信息;在Middlebury数据集上,新方法比ST-2方法计算速度提高了157.500%,匹配精度提高了66.547%。 This paper proposed a novel stereo matching method of the mobile robot based on segment tree to improve the speed and accuracy of depth recovery at the low texture,repeated texture and reflective environment.Firstly,it preprocessed the images for the mobile robot environment to reduce the influence of the light changes.In addition,this paper used the minimum spanning tree to weight the image pixels,and segmented the image by the segment tree.Then,it restored the depth of the occlusion area and the edge area that did not provide depth,and improved the accuracy of depth recovery.Finally,it carried out the comparison experiments.In indoor scenes,the calculation speed of this paper method was 187.140% faster than the ST-2 method,and semantic information could be provided for the mobile robot.On the Middlebury datasets,the calculation speed of this method was 157.500% faster than the ST-2 method,while the matching accuracy was improved 66.547%.
作者 陈常 朱华 Chen Chang;Zhu Hua(University School of Mechatronic Engineering,China University of Mining&Technology,Xuzhou Jiangsu 221008,China;Jiangsu Collaborative Innovation Center of Intelligent Mining Equipment,Xuzhou Jiangsu 221008,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第8期2522-2525,2535,共5页 Application Research of Computers
基金 “十三五”国家重点研发计划项目(2018YFC0808000)。
关键词 立体匹配 移动机器人 分割树 非局部 stereo matching mobile robot segment tree non-local
  • 相关文献

参考文献7

二级参考文献41

  • 1唐丽,吴成柯,刘侍刚,颜尧平.基于区域增长的立体像对稠密匹配算法[J].计算机学报,2004,27(7):936-943. 被引量:27
  • 2鲍文霞,梁栋,王年,童强.基于图割理论和极几何约束的图像匹配算法[J].计算机工程,2007,33(1):193-194. 被引量:4
  • 3Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42.
  • 4Boykov Y, Kolmogorov V. An experimental comparison of mincut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137.
  • 5Hong L, Chen G. Segment-based stereo matching using graph cuts[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2004: 74-81.
  • 6Deng Y, Yang Q, Lin X Y, et al. Stereo correspondence with occlusion handling in a symmetric patch-based graph-cuts model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1068-1079.
  • 7Kolmogorov V. Graph based algorithms for scene reconstruction from two or more views[D]. Ithaca, NY, USA: Cornell University, 2003.
  • 8Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts[C]//IEEE International Conference on Computer Vision. Piscataway, N J, USA: IEEE, 2001: 508-515.
  • 9Greig D, Porteous B, Seheult A. Exact maximum a-posteriori estimation for binary images[J]. Journal of the Royal Statistical Society, Series B, 1989, 51(2): 271-279.
  • 10Ford L R, Fulkerson D R. Flows in networks[M]. USA: Princeton University Press, 1962.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部