期刊文献+

基于残差网络的小型车辆目标检测算法 被引量:8

Small vehicle target detection algorithm based on residual network
下载PDF
导出
摘要 城市道路中车辆检测与识别对于提升交通安全,发展智能化交通具有非常重要的意义。传统的检测方式依赖于人工提取的特征,已难以适用于复杂多变的交通场景,存在识别精确度低、时间复杂度高等缺陷。深度学习模型可以自动提取有用特征,泛化能力强,但难以对相似型车辆进行更加精细的分类,为此提出一种基于残差网络的小型车辆目标检测算法。算法将传统卷积神经网络的连接形式改为一种基于局部连接和权值共享的残差连接模式,同时更改网络结构控制参数数量,将图片不同层次的特征融合计算,应用感兴趣区域池化层规格化前层特征,最后经过分类层和回归层得到目标框的置信度以及修正参数。实验表明,改进模型能够在保证时间效率的前提下增强网络的学习能力,提高平均精度,在相似小型车辆的检测问题上取得了良好的检测结果。 Vehicle detection and identification in urban roads is of great significance for improving traffic safety and developing intelligent transportation.The traditional detection method relies on the features of manual extraction,which has been difficult to apply the complex and variable traffic scenarios,and has the defects of low recognition accuracy and high time complexity.The deep learning model can automatically extract effective features,and the generalization ability is strong,but it is difficult to classify similar vehicles more closely.To this end,this paper proposed a small vehicle target detection algorithm based on residual network.The algorithm changed the connection form of the traditional convolutional neural network to a residual connection mode based on local connection and weight sharing.At the same time,this paper changed the number of network structure control parameters,fused the features of different levels of the picture,applied the pooling layer of the region of interest to normalize the front layer features,and finally obtained the confidence and correction parameters of the target frame through the classification layer and the regression layer.Experiments show that the improved model can enhance the learning ability of the network under the premise of ensuring time efficiency,improve the average accuracy value,and obtain good detection results on the detection of similar small vehicles.
作者 厍向阳 韩伊娜 She Xiangyang;Han Yina(College of Computer Science&Technology,Xi’an University of Science&Technology,Xi’an 710054,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第8期2556-2560,共5页 Application Research of Computers
基金 陕西省自然科学基金资助项目(2017JM6105)。
关键词 深度学习 目标检测 残差网络 小型车辆识别 deep learning object detection residual network small vehicle identification
  • 相关文献

参考文献6

二级参考文献33

  • 1钱志明,杨家宽,段连鑫.基于视频的车辆检测与跟踪研究进展[J].中南大学学报(自然科学版),2013,44(S2):222-227. 被引量:13
  • 2刘洋,王海晖,向云露,卢培磊.基于改进的Adaboost算法和帧差法的车辆检测方法[J].华中科技大学学报(自然科学版),2013,41(S1):379-382. 被引量:14
  • 3XIONG Cliangzhen, FAN Wuyi, LI Zhengxi. Traffic flowdetection algorithm based on intensity curve of high-resolu-tion image[ C ]//IEEE Computer Modeling and Simulation.Sanya, China, 2010: 159-162.
  • 4MARIND, AQUINO A,GEGUNDEZ-AKIAS M E, et al. Anew supervised method for blood vessel segmentation in reti-nal images by using gray-level and moment invariants-basedfeatures[ J] . IEEE Transactions on Medical Imaging, 2011,30(1) : 146-158.
  • 5HAN B, DAVIS L S. Density-based multifeature backgroundsubtraction with support vector machine [ J ]. IEEE Transaotions on Pattern Analysis and Machine Intelligence, 2012,34(5) : 1017-1023.
  • 6CHENGLi, GONG Minglun, SCHUURMANS D,et al. Re-al-time discriminative background subtraction[ j]. IEEETransactions on Image Processing, 2011, 20(5): 1401-1414.
  • 7BARNICH 0,VAN DROOGENBROECK M. ViBe: A uni-versal background subtraction algorithm for video sequences[J ]. IEEE Transactions on Image Processing, 2011,20(6): 1709-1724.
  • 8FU Wenlong, JOHNSTON M,ZHANG Mengjie. Geneticprogramming for edge detection: a global approach [ C]//2011 IEEE Congress on Evolutionary Computation. Welling-ton, New Zealand, 2011 : 254-261.
  • 9AI-GHAILI A M, MASHOHOR S,RAMLI A R, et al. Ver-tical-edge-based car-license-plate detection method [ J ].IEEE Transactions on Vehicular Technology, 2013,62( 1):26-38.
  • 10CHEN Xueyun, XIANG Shiming, LIU Chenglin, et al. Ve-hicle detection in satellite images by hybrid deep convolu-tional neural networks [ J ] . IEEE Geoscience and RemoteSensing Utters, 2014,11( 10): 1797-1801.

共引文献127

同被引文献68

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部