期刊文献+

冰水槽内气泡辅助破冰系统的机理实验研究 被引量:3

Experimental study of the mechanism of an air bubbling system in a small ice water tank
下载PDF
导出
摘要 为了揭示气泡辅助破冰机理,以极地破冰船气泡辅助破冰系统为研究对象,本文设计制作了船模及气泡辅助破冰系统模型并依托低温实验室进行一系列机理实验。通过机理实验探究加装气泡辅助破冰系统后冰层在船艏、船肩及舷侧的破坏模式,研究气泡辅助破冰系统与海冰相互作用机理。在此基础上对多种物理参数的影响进行分析。研究表明:气泡辅助破冰系统通过在冰层下形成气泡腔,破坏了水对于冰的弹性支撑;同时向上运动的气泡流将碎冰块吹离船体,形成船体与碎冰间的润滑层,从而分别降低了破冰船在冰区航行的破冰阻力和清冰阻力,达到了辅助破冰船航行的效果。 Taking the air bubbling system of polar icebreakers as the research object,we designed and manufactured the ship model and air bubbling system model and conducted a series of mechanism experiments in a cold room,aiming to reveal their working principles.Through a series of mechanism experiments,the failure modes of level ice around the bow,shoulder,and side shell of the icebreakers were explored,and the effects of the air bubbling system on the failure modes of ice were observed.Through a comparative analysis,the interaction mechanism between the air bubbling system and sea ice was investigated.Results show that the air bubbling system broke the water’s elastic support to ice by forming a bubble cavity under the ice layer,and simultaneously,the air bubble flow moving upwards blew the broken ice blocks away from the ship,forming a lubricating layer between the hull and broken ices,thereby reducing the resistances of icebreaking and ice-clearing and realizing the effect of assisting the icebreakers on navigation.
作者 倪宝玉 郭鹏杰 薛彦卓 NI Baoyu;GUO Pengjie;XUE Yanzhuo(College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第6期777-783,共7页 Journal of Harbin Engineering University
基金 国家重点研发计划战略性国际科技创新合作重点专项(2017YFE0111400) 国家自然科学基金项目(51979051,51639004,51979056) 黑龙江省自然科学基金项目(A2018003)。
关键词 水下气泡 极地 破冰船 破冰技术 平整冰 气泡辅助系统 机理实验 冰水槽 underwater bubble polar icebreaker ice breaking technology level ice air bubbling system mechanism experiment ice water tank
  • 相关文献

参考文献7

二级参考文献76

  • 1王家楣,郑晓伟,姜曼松.船舶吃水对微气泡减阻影响的水池试验研究[J].船舶工程,2004,26(6):9-12. 被引量:27
  • 2李春花,王永学,李志军,孙鹤泉.半圆型防波堤前海冰堆积模拟[J].海洋学报,2006,28(4):172-177. 被引量:10
  • 3Madavan N K, Deutsch S, Merkle C L. Reduction of turbulent skin friction by microbubbles. Phys. Fluids.,1984, 27(2): 356-363
  • 4Dunischev Yu, Evseev A R, Sobolev V S, et al. Study of gas saturated turbulent streams using a laser-doppler velocimeter. J. Appl. Mech. Tech. Phys., 1975,16(1): 114-118
  • 5Madavan N K, Deutsch S, Merkle C L. Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech., 1985, 15(6): 237-256
  • 6SQUIRE V A. Of ocean waves and sea-ice revisited[J]. Cold Regions Science and Technology, 2007, 49(2):110-133.
  • 7NANSEN F. Oceanography of the North Pole Basin:Norwegian north polar expedition, 1893-1896[J]. Scientific Results, 1902, 3(9):1-427.
  • 8BERGAN P G, CAMMAERT G, SKEIE G, et al. On the potential of computational methods and numerical simulation in ice mechanics[C]//Proceedings of IOP Conference Series:Materials Science and Engineering. Sydney, Australia, 2010.
  • 9ZUMIYAMA K, KITAGAWA H, KOYAMA K, et al. On the interaction between a conical structure and ice sheet[C]//Proceedings of 11th International Conference on Port and Ocean Engineering under Arctic Conditions. Newfoundland, Canada, 1991.
  • 10SU Biao, RISKA K, MOAN T. A numerical method for the prediction of ship performance in level ice[J]. Cold Regions Science and Technology, 2010, 60(3):177-188.

共引文献110

同被引文献43

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部