摘要
基于时间序列异常检测在航天试验和航天测控领域应用广泛的现实背景,提出一种改进的层级时间记忆(HTM)实时异常检测模型。在层级时间记忆模型的基础上,通过引入滑动窗口和β分布,对该模型输出的预测偏差进行相关处理,实现对原异常检测模型的优化改进。经过改进,该模型可以对异常下降进行有效的识别判断,也消除了在前期学习过程中出现的误警现象,性能上有一定的提升。
Based on the practical background of the wide application of time series anomaly detection in space test and space TT&C,we propose an improved real-time anomaly detection model with hierarchical temporal memory.Based on the hierarchical temporal memory model,the sliding window and beta distribution were introduced to deal with the prediction deviation of the output of the model,thus the optimization and improvement of the original anomaly detection model was realized.After improvement,our model can effectively identify and judge the abnormal decline,and also eliminates the false alarm in the early learning process of the model,which improves the performance of the improved real-time anomaly detection model to a certain extent.
作者
王宇鹏
朱诗兵
李长青
Wang Yupeng;Zhu Shibing;Li Changqing(Space Engineering University,Beijing 101416,China)
出处
《计算机应用与软件》
北大核心
2020年第8期296-299,313,共5页
Computer Applications and Software
关键词
时间序列
异常检测
层级时间记忆模型
滑动窗口
β分布
Time series
Anomaly detection
Hierarchical temporal memory model
Sliding window
Beta distribution