期刊文献+

云环境保护竞价隐私的最佳路径算法

A BEST PATH ALGORITHM FOR PROTECTING BIDDING PRIVACY IN CLOUD ENVIRONMENT
下载PDF
导出
摘要 针对云环境下最佳路径比较过程中存在泄露用户竞价隐私的问题,提出一种基于二进制前缀族的云环境下保护竞价隐私的最佳路径算法。建立二进制前缀族,并通过对前缀族使用哈希加密的方法建立保密环境下的比较集合,有效地防止云环境以及其他竞价用户对竞价隐私信息的获取。同时解决了基于多方安全计算的隐私保护竞价方法处理效率相对较低的问题。模拟实验表明:该算法在隐私保护能力以及算法执行效率方面优于其他算法。 In order to solve the problem of disclosure of bidding privacy in the process of comparing the best path in the cloud environment,we propose an optimal path algorithm for protecting bidding privacy in the cloud environment based on binary prefix family.It built binary prefix family,and hash encryption was used to build comparison set in a secure environment.It could effectively prevent the cloud environment and other bidding users from obtaining bidding privacy information,and it also solved the problem of low efficiency of privacy protection bidding method based on multi-party security calculation.The simulation experiments show that our algorithm is better than other algorithms in privacy protection ability and algorithm execution efficiency.
作者 王超 张磊 张春玲 Wang Chao;Zhang Lei;Zhang Chunling(College of Information Science and Electronic Technique,Jiamusi University,Jiamusi 154007,Heilongjiang,China;Mudanjiang Technician Institute,Mudanjiang 157000,Heilongjiang,China)
出处 《计算机应用与软件》 北大核心 2020年第8期324-328,共5页 Computer Applications and Software
基金 黑龙江省自然科学基金优秀青年项目(YQ2019F018) 黑龙江省普通本科高等学校青年创新人才培养计划项目(UNPYSCT-2017149) 黑龙江省普通本科高等学校基本科研业务费科研项目(2018-KYYWF-0939)。
关键词 云环境 最佳路径 前缀族 隐私保护 竞价 Cloud environment Optimal path Prefix family Privacy protection Bidding
  • 相关文献

参考文献4

二级参考文献26

  • 1Rashedi E, Nezamabadi-Pour H, Saryazdi S. Long term learning in image retrieval systems using case based rea- soning[ J]. Engineering Applications of Artificial Intelli- gence,2014,35 (10) :26 -37.
  • 2Bugatti P H,Kaster D S,Ponciano-Silva M,et al. PROS- Per:Perceptual similarity queries in medicalCBIR systems through user profiles[J]. Computers in Biology & Medi-cine,2014,45(2):8-19.
  • 3Rashedi E, Nezamabadi H. Feature subset selection using improved binary gravitational search algorithm [ J ]. Jour- nal of Intelligent and Fuzzy Systems, 2014,26 ( 3 ) : 1211 - 1221.
  • 4Silva A D, Xavier A, Magalhooes L P. A new CBIR ap- proach based on relevance feedback and optimum path forest classification[ J ]. Journal of WSCG, 20113,27 ( 3 ) : 73 - 80.
  • 5Tong S,Chang E Y. Support vector machine active learn- ing for image retrieval [ C ]//Proceedings of the Ninth ACM International Conference on Multimedia. Ottawa: IEEE ,2001 : 107 - 118.
  • 6Choudhary R,Raina N,Chaudhary N,et al. An integrated approach to content based image retrieval[C]//Advances in Computing, Communications and Informatics ( ICACCI, 2014 International Conference). Greater Noida: IEEE, 2014:2404 - 2410.
  • 7Jian M, Guo H,Liu L. Texture image classification using visual perceptual texture features and Gabor wavelet fea- tures [ J ]. Journal of Computers, 2009,4 ( 8 ) : 763 - 770.
  • 8Liu D,Hua K A,Vn K,et al. Fast query point movement tech- niques for large CBIR systems [ J ]. IEEE Transactions on Knowledge and Data Engineering,21309,21(5):729-743.
  • 9Datta R, Joshi D, Li J, et al. Image retrieval : Ideas, influ- ences,and trends of the new age[J]. ACM Transactions on Computing Surveys, 2008,40 (2) : 1 - 66.
  • 10CormenT,LeisersonC,RivestR.算法导论[M].4版.北京:人民邮电出版社,2012.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部