期刊文献+

基于相似性负采样的知识图谱嵌入 被引量:7

Knowledge graph embedding based on similarity negative sampling
下载PDF
导出
摘要 针对现有知识图谱嵌入模型通过从实体集中随机抽取一个实体来生成负例三元组,导致负例三元组质量较低,影响了实体与关系的特征学习能力。研究了影响负例三元组质量的相关因素,提出了基于实体相似性负采样的方法来生成高质量的负例三元组。在相似性负采样方法中,首先使用K-Means聚类算法将所有实体划分为多个组,然后从正例三元组中头实体所在的簇中选择一个实体替换头实体,并以类似的方法替换尾实体。通过将相似性负采样方法与TransE相结合得到TransE-SNS。研究结果表明:TransE-SNS在链路预测和三元组分类任务上取得了显著的进步。 For the existing knowledge graph embedding model,the random extraction of an entity from the entity set results in the generation of lower-quality negative triples,and this affects the feature learning ability of the entity and the relationship.In this paper,we study the related factors affecting the quality of negative triples,and propose an entity similarity negative sampling method to generate high-quality negative triples.In the similarity negative sampling method,all entities are first divided into a number of groups using the K-means clustering algorithm.Then,corresponding to each positive triple,an entity is selected to replace the head entity from the cluster,whereby the head entity is located in the positive triple,and the tail entity is replaced in a similar approach.TransE-SNS is obtained by combining the similarity negative sampling method with TransE.Experimental results show that TransE-SNS has made significant progress in link prediction and triplet classification tasks.
作者 饶官军 古天龙 常亮 宾辰忠 秦赛歌 宣闻 RAO Guanjun;GU Tianlong;CHANG Liang;BIN Chenzhong;QIN Saige;XUAN Wen(Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《智能系统学报》 CSCD 北大核心 2020年第2期218-226,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(U1501252,61572146) 广西创新驱动重大专项项目(AA17202024) 广西自然科学基金项目(2016GXNSFDA380006) 广西高校中青年教师基础能力提升项目(2018KYD203) 广西研究生教育创新计划项目(YCSW2018139)。
关键词 知识图谱 表示学习 随机抽样 相似性负采样 K-MEANS聚类 随机梯度下降 链接预测 三元组分类 knowledge graph representation learning random sampling similarity sampling K-means clustering stochastic gradient descent link prediction triple classification
  • 相关文献

参考文献1

二级参考文献82

  • 1Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 2Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 3Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 4Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 5Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 6Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 7Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 8Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 9Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.
  • 10Zhao Y, Liu Z, Sun M. Representation learning for measuring entity relatedness with rich information [C] //Proc of IJCAI. San Francisco, CA: Morgan Kaufmann, 2015: 1412-1418.

共引文献259

同被引文献32

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部