期刊文献+

基于操作信号和眼动信号的驾驶员技能等级评价模型 被引量:1

Evaluation About Driving Skill Level Base on Eye Movement and Operating Signal
下载PDF
导出
摘要 利用驾驶员在环仿真实验平台,搭建了较为真实的交通场景,采集驾驶员眼动信号和操作信号,利用眼动信号关于感兴趣区域(车内区域、车辆前方近处区域、远方区域)注视时间占比的结果给驾驶员贴标签,以减少标签错误的可能性;采用支持向量机(SVM)方法,比较研究基于单一操作信号(转向盘转角中心、速度、侧向加速度)和多操作信号组合评价驾驶员的技能等级。结果表明:采用纵向速度和侧向加速度信号组合比单一操作信号以及其他操作信号的组合对驾驶员技能等级分类正确率高。同时,通过比较多种驾驶员技能等级评价模型,得出最佳驾驶员技能等级评价的经验模型0.3*exp(6*V)+0.7*(8*Ac),其分类正确率达到了90%。 In order to make the driver’s skill evaluation agree with the real situation,the more realistic scenarios are built in the driver-in-the-loop experiment platform in this paper,where the eye movement information and the operating signals are collected. The results of the focused time proportion on the interesting areas(e.g. the vehicle interior area,the near area to the vehicle front area,or the distant area)based on the eye movement information are used to label drivers,and it could decrease labeling error. Simultaneously,the accuracyof the single signal(speed,steering wheel center,lateral acceleration)and the combined operation signalare compared by SVM model. The results show that the combination of the longitudinal velocity and lateral acceleration achieves the highest accuracy. By comparing a variety of driver’s skill evaluationmodel based on different characteristics,it concludes that the driver skill evaluation empirical model is(0.3*exp(6*V)+0.7*(8*Ac)),and the classification accuracy could reach 90%.
作者 宋晓琳 费宏亮 SONG Xiao-lin;FEI Hong-liang(State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hu’nan University,Hu’nan Changsha 410082,China)
出处 《机械设计与制造》 北大核心 2020年第8期15-20,共6页 Machinery Design & Manufacture
基金 仿驾驶员态势感知模型与人机协同驾驶决策研究(51575169) 基于深度学习的驾驶员注意力多维度评估与建模研究(2017JJ2032)。
关键词 驾驶员特征 眼动信号 操作信号 支持向量机 技能等级评定 Drivers Characteristics Eye Movement Operating Signal Support Vector Machine Evaluation About Driving Skill
  • 相关文献

参考文献3

二级参考文献35

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2Vapnik V. The natural of statistical theory [ M ] . New York :Springer -Verlag ,1995.
  • 3Nello C ,John S T. An introduction to support vector machines and other kernel-based learning methods [M] .Cambridge : Cambridge University Press,2000.
  • 4Steve R.Gunn, Support Vector Machines for Classification and Regression, Technical Report, 10 May 1998.
  • 5Hsu Ch W,Lin Ch J. A comparison of methods for multi2class support vector machines [J]. IEEE Transactions on Neural Networks,2002,13 (3):415~ 425.
  • 6WestonJ,Watkins C.Multi-class support vector machines [R].Royal Holloway College.Tech Rep:CSD-TR-98-04,1998.
  • 7Newell A.Production systems:models of control structures[M]//Chase W G.Visual Information Processing.New York:Academic Press,1973:463-526.
  • 8Newell A.Unified theories of cognition[M].Cambridge,MA,USA:Harvard University,1990:42-107.
  • 9Anderson J R,Bothell D,Byrne M D,et al.An integrated theory of the mind[J].Psychological Review,2004,111(4):1036.
  • 10Anderson J R.Using brain imaging to guide the development of a cognitive architecture[M]//Integrated Models of Cognitive Systems.New York,NY,USA:Oxford University Press,2007:49-62.

共引文献36

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部