期刊文献+

不等式约束PEIV模型的最优性条件及SQP算法 被引量:2

Optimality Conditions of Inequality Constrained Partial EIV Model and the SQP Algorithm
原文传递
导出
摘要 基于约束非线性规划理论的最优性条件,推导了不等式约束PEIV(partial errors-in-variables)模型在加权最小二乘准则下取得最优解的一阶必要条件和二阶充分条件,以此作为算法设计的依据和检核解最优性的标准。根据序列二次规划算法,将非线性目标函数和约束方程在近似值处用泰勒级数展开,转换为二次规划子问题,采用积极约束算法同时估计模型参数和系数阵元素。数值模拟算例和线性回归的结果表明,新算法可行有效,具有良好的计算效率。 According to the optimality conditions of constrained nonlinear programming theory, the first-order necessary conditions and the second-order sufficient conditions of the weighted least squares solution are derived in inequality constrained partial errors-in-variables model. These conditions are used to design the algorithms and check the optimality of the solution. The nonlinear target function is expanded to the second order at the approximate value with Taylor series and a quadratic programming sub-problem is formed based on the method of sequential quadratic programming. The model parameters and elements of the coefficient matrix are calculated with active set method at the same time. The data simulation and a linear regression example show that the new algorithm is feasible and effective,which is more efficient than the linearization method.
作者 谢建 龙四春 周璀 XIE Jian;LONG Sichun;ZHOU Cui(Hunan Province Key Laboratory of Coal Resources Cleanutilization and Mine Environment Protection,Xiangtan 411201,China; College of Science,Central South University of Forestry and Technology,Changsha 410018,China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2020年第7期1002-1007,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41704007,41474014,41604012) 湖南科技大学博士启动基金(E51673)。
关键词 不等式约束 PEIV模型 整体最小二乘 最优性条件 序列二次规划 积极约束法 inequality constraints partial errors-in-variables model total least squares optimality conditions sequential quadratic programming active set method
  • 相关文献

参考文献5

二级参考文献42

  • 1杜明芳.空间直线拟合[J].北京印刷学院学报,1996,4(2):27-31. 被引量:15
  • 2陈义,沈云中,刘大杰.适用于大旋转角的三维基准转换的一种简便模型[J].武汉大学学报(信息科学版),2004,29(12):1101-1105. 被引量:171
  • 3Felus Y A, Sehaffrin B. Performing Similarity Transformations Using the Error-In-Variables Model[C]. ASPRS 2005 Annual Conference Bahirnore, Maryland, 2005.
  • 4Golub H G. Van Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893.
  • 5Van Huffel S, Vandewalle J. The Total Least Squares Problem: Computational Aspects and Analysis[M]. Philadephia; Society for Industrial and Applied Mathematics, 1991.
  • 6Schaffrin B. A Note on Constrained Total Least Squares Estirnation[J]. Linear Algebra and Its Ap plications, 2006,417:245-258.
  • 7李德仁,郑肇葆.解析摄影测奄学[M].北京:测绘出版社,1992:74-75.
  • 8孔祥元,郭际明,刘宗泉.大地测量学基础[M].武汉:武汉大学出版社,2010:218-220.
  • 9Golub G H,van Loan C F. An Analysia of the Total Least Squares Problem[J]. SIAM J Numer Anal, 1980,17:883-893.
  • 10van Huffel S, Vandeualle J. The Total Least Squares Problems[J]. Computational Aspects and Analysis, Frontiers in Applied, Mathematics, SIAM, Philadelphia, 1991(9) :34-35,84-86.

共引文献176

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部