期刊文献+

基于深度学习的鱼类识别与检测的算法研究 被引量:13

Research on fish recognition and detection algorithm based on deep Learning
下载PDF
导出
摘要 鱼类分类识别在渔业资源研究、鱼类知识的科学推广、水产养殖加工、稀有物种保护等领域具有广泛的应用前景。针对大菱鲆、黄鳍鲷、金钱鱼、鲻鱼这四种鱼类,利用PyTorch框架为基础,通过ResNet50网络模型,用不同的算法对其进行分类识别,不断对模型进行优化,对四种鱼类训练学习,通过测试其准确率达到96%以上。同时用PyQt5开发了GUI可视化界面,通过界面图片的选择和预测功能按钮的操作,测试结果实际类别与预测类别一致,用DSOD框架做了水下目标实时跟踪检测,提高了对小目标的检测率,同时保持了模型的检测速度,检测结果达到期望。 Fish classification and identification has broad application prospects in the fields of fisheries resource research,scientific promotion of fish knowledge,aquaculture processing,and protection of rare species.In this paper,for the four species of turbot,yellowfin snapper,golden fish,mullet,based on the PyTorch framework,the ResNet50 network model is used to classify and identify them with different algorithms,and the model is continuously optimized.The accuracy rate of fish training is 96%.At the same time,the GUI visual interface was developed with PyQt5.Through the selection of interface pictures and the operation of the prediction function button,the actual category of the test results is consistent with the predicted category.The real-time tracking and detection of underwater targets was done using the DSOD framework,which improved the detection rate of small targets.At the same time,the detection speed of the model is maintained,and the detection results meet expectations.
作者 王文成 蒋慧 乔倩 祝捍皓 郑红 Wang Wencheng;Jiang Hui;Qiao Qian;Zhu Hanhao;Zheng Hong(College of Shipping and Electromechanical Engineering,Zhejiang Ocean University,Zhoushan 316022,China;College of Marine Science and Technology,Zhejiang Ocean University,Zhoushan 316022,China)
出处 《信息技术与网络安全》 2020年第8期57-61,66,共6页 Information Technology and Network Security
基金 舟山市科技计划项目(2017C41003)。
关键词 PyTorch框架 ResNet50网络 PyQt5可视化界面 DSOD目标检测器 PyTorch framework ResNet50 network PyQt5 visual interface DSOD target detector
  • 相关文献

参考文献9

二级参考文献57

  • 1张波,唐启升,金显仕.东海高营养层次鱼类功能群及其主要种类[J].中国水产科学,2007,14(6):939-949. 被引量:37
  • 2张波,唐启升.渤、黄、东海高营养层次重要生物资源种类的营养级研究[J].海洋科学进展,2004,22(4):393-404. 被引量:110
  • 3张波,唐启升,金显仕,薛莹.东海和黄海主要鱼类的食物竞争[J].动物学报,2005,51(4):616-623. 被引量:18
  • 4张月平.南海北部湾主要鱼类食物网[J].中国水产科学,2005,12(5):621-631. 被引量:44
  • 5江胜锋,程家骅.东海发光鲷生物量分布及其与环境的关系[J].海洋渔业,2007,29(3):221-225. 被引量:4
  • 6ROBOTHAM H, BOSCH P, CARLOS J, et al. Acoustic i- dentification of small pelagic fish species in Chile using sup- port vector machines and neural networks[ J]. Fisheries Re- search, 2010, 102( 1/2): 115-122.
  • 7LUNDGREN B, NIELSEN J R. A method for the possible species discrimination of juvenile gadoids by broad-band- width backscattering spectra vs. angle of incidence [ J ]. IC- ES Journal of Marine Science, 2008, 65(4) : 581-593.
  • 8SLAS-CITAL A, ATKINS P R, FOO K Y. Broadband am- plitude and phase sonar calibration using LFM pulses for high-resolution study of hard and soft acoustic targets [ C ]// OCEANS 2011, Spain, 2011: 1-8.
  • 9LIU G, JAYATHILAKE P G, KHOO B C. Conformal map- ping for the Helmhohz equation Acoustic wave scattering by a two dimensional inclusion with irregular shape in an ideal fluid [ J ]. Journal of the Acoustical Society of America, 2012, 131(2): 1055-1065.
  • 10CARTMILL J, WACHOWSKI N, AZIMI-SADJADI M R. Buried underwater object classification using a collaborative multi-aspect classifier [ J ]. IEEE Journal of Oceanic Engi- neering, 2009, 34(1): 32-44.

共引文献146

同被引文献118

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部