期刊文献+

Multi-agent graphical games with input constraints:an online learning solution 被引量:2

原文传递
导出
摘要 This paper studies an online iterative algorithm for solving discrete-time multi-agent dynamic graphical games with input constraints.In order to obtain the optimal strategy of each agent,it is necessary to solve a set of coupled Hamilton-Jacobi-Bellman(HJB)equations.It is very difficult to solve HJB equations by the traditional method.The relevant game problem will become more complex if the control input of each agent in the dynamic graphical game is constrained.In this paper,an online iterative algorithm is proposed to find the online solution to dynamic graphical game without the need for drift dynamics of agents.Actually,this algorithm is to find the optimal solution of Bellman equations online.This solution employs a distributed policy iteration process,using only the local information available to each agent.It can be proved that under certain conditions,when each agent updates its own strategy simultaneously,the whole multi-agent system will reach Nash equilibrium.In the process of algorithm implementation,for each agent,two layers of neural networks are used to fit the value function and control strategy,respectively.Finally,a simulation example is given to show the effectiveness of our method.
出处 《Control Theory and Technology》 EI CSCD 2020年第2期148-159,共12页 控制理论与技术(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61773241,61973183) the Shandong Provincial Natural Science Foundation(No.ZR2019MF041).
  • 相关文献

参考文献1

二级参考文献1

共引文献5

同被引文献6

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部