期刊文献+

基于卷积神经网络的橘子分类识别研究 被引量:2

Research on orange classification and recognition based on convolutional neural network
下载PDF
导出
摘要 为了增强橘子表皮缺陷提取效果,满足橘子品质自动分类的实时性和准确性要求,构建了橘子数据集,以ReLU为激活函数,Max-pooling为下采样方法,建立了包含3个卷积层、3个下采样层、1个全连接层和1个Softmax回归分类器为输出层的卷积神经网络模型,采用小批量梯度下降法训练并优化网络模型.实验平台基于Keras深度学习框架,利用Anaconda下的Spyder编译工具进行Python编程,实验结果表明:方法分类准确率达94.34%,比现有分类方法准确率高出4.75个百分点. In order to enhance the extraction effect of orange epidermis defects,meet the real-time and accurate requirements of automatic classification of orange quality,the orange data set is constructed firstly,then a convolutional neural network model with three convolution layers,three sub-sampling layers,one full connection layer and one Softmax regression classifier is established with ReLU as the activation function and Max-pooling as the sub-sampling method,a small batch gradient descent method is used to train and optimize the network model.The experimental platform is based on the Keras deep learning framework and uses the Spyder compilation tool under Anaconda for Python programming.The experimental results show that the accuracy of the proposed method is as high as 94.34%,the accuracy rate is 4.75 percentage points higher than the existing classification methods.
作者 李琳芳 王建军 魏征 冯向荣 安金梁 LI Linfang;WANG Jianjun;WEI Zheng;FENG Xiangrong;AN Jinliang(School of Information Engineering,Henan Institute of Science and Technology,Xinxiang 453003,China;Xinke College of Henan Institute of Science and Technology,Xinxiang 453003,China)
出处 《河南科技学院学报(自然科学版)》 2020年第3期68-73,共6页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
基金 河南省科技攻关项目(202102210349)。
关键词 图像识别 特征提取 深度学习 卷积神经网络 品质分类 image recognition feature extraction deep learning convolutional neural network quality classification
  • 相关文献

参考文献5

二级参考文献68

  • 1熊俊涛,叶敏,邹湘军,彭红星,林桂潮,朱梦思.多类型水果采摘机器人系统设计与性能分析[J].农业机械学报,2013,44(S1):230-235. 被引量:41
  • 2林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 3于国英,毛罕平.农业智能车辆视觉导航参数提取的研究[J].农机化研究,2007,29(1):167-169. 被引量:9
  • 4田有文,李天来,李成华,朴在林,孙国凯,王滨.基于支持向量机的葡萄病害图像识别方法[J].农业工程学报,2007,23(6):175-180. 被引量:84
  • 5Bulanon D M, Kataoka T. Fruit detection system and an end effector for robotic harvesting of Fuji apples [ J ]. Agricuhural Engineering International : the CIGR Journal, 2010, 12 ( 1 ) : 203 - 210.
  • 6Kondo N, Yata K, Iida M, et al. Development of an end-effector for a tomato cluster harvesting robot [ J ]. Engineering in Agricuhure, Environment and Food, 2010, 3(1): 20-24.
  • 7Bulanon D M, Burks T F, Alchanatis V. Sludy on fruit visibility for robotic harvesting[C]. 2007 ASABE Annual Meeting Paper, 073124, 2007.
  • 8Reed J N, Miles S J, Butler J, et al. AE-automalion and emerging technologies: automatic mushroom harvester development[J]. Journal of Agricultural Engineering Research, 2001 , 78 ( 1 ) : 15 -23.
  • 9De-An Z, Jidong L. Wei J, et al. Design and control of an apple harvesting robot[J]. Biosystems Engineering, 2011, 110(2): 112 - 122.
  • 10Kavdir I, Guyer D E. Evalution of difference pattern recognition techniques for apple sorting[ J]. Biosystems Eingineering, 2008, 99(2) : 211 -219.

共引文献118

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部