摘要
为了增强橘子表皮缺陷提取效果,满足橘子品质自动分类的实时性和准确性要求,构建了橘子数据集,以ReLU为激活函数,Max-pooling为下采样方法,建立了包含3个卷积层、3个下采样层、1个全连接层和1个Softmax回归分类器为输出层的卷积神经网络模型,采用小批量梯度下降法训练并优化网络模型.实验平台基于Keras深度学习框架,利用Anaconda下的Spyder编译工具进行Python编程,实验结果表明:方法分类准确率达94.34%,比现有分类方法准确率高出4.75个百分点.
In order to enhance the extraction effect of orange epidermis defects,meet the real-time and accurate requirements of automatic classification of orange quality,the orange data set is constructed firstly,then a convolutional neural network model with three convolution layers,three sub-sampling layers,one full connection layer and one Softmax regression classifier is established with ReLU as the activation function and Max-pooling as the sub-sampling method,a small batch gradient descent method is used to train and optimize the network model.The experimental platform is based on the Keras deep learning framework and uses the Spyder compilation tool under Anaconda for Python programming.The experimental results show that the accuracy of the proposed method is as high as 94.34%,the accuracy rate is 4.75 percentage points higher than the existing classification methods.
作者
李琳芳
王建军
魏征
冯向荣
安金梁
LI Linfang;WANG Jianjun;WEI Zheng;FENG Xiangrong;AN Jinliang(School of Information Engineering,Henan Institute of Science and Technology,Xinxiang 453003,China;Xinke College of Henan Institute of Science and Technology,Xinxiang 453003,China)
出处
《河南科技学院学报(自然科学版)》
2020年第3期68-73,共6页
Journal of Henan Institute of Science and Technology(Natural Science Edition)
基金
河南省科技攻关项目(202102210349)。
关键词
图像识别
特征提取
深度学习
卷积神经网络
品质分类
image recognition
feature extraction
deep learning
convolutional neural network
quality classification