期刊文献+

基于加工位置不确定的多工步数控铣削工艺参数优化研究 被引量:8

Process parameters optimization of multi-pass CNC milling considering uncertain machining position
下载PDF
导出
摘要 针对铣削稳定性评价指标极限切削深度随加工位置改变而变化,导致铣削工艺参数优化模型中稳定性约束具有不确定性问题,结合不同加工位置刀具频响函数和切削稳定性理论,建立加工空间极限切削深度广义回归神经网络(GRNN)预测模型,基于该GRNN模型完善铣削稳定性约束条件,进而构建以机床各运动部件位移与粗/精加工切削参数为变量,以粗/精加工总切削时间为目标的多工步数控平面铣削工艺参数优化模型,采用粒子群算法(PSO)求解该优化模型。以某企业加工中心展开实例研究,获取机床加工位置和粗/精加工主轴转速、切削深度、切削宽度、每齿进给量的优化配置,优化后粗/精加工总切削时间比优化前缩短22.47%,并通过该配置下的无颤振铣削加工验证了优化模型的有效性。 Limiting cutting depth for evaluating the milling stability is dependent on the machining position.The consequence is that the stability constraint of the process parameters optimization model has uncertain.To solve this problem,the tool tip frequency response functions at different machining positions are combined with the milling stability theory.Firstly,a general regression neural network(GRNN)is formulated for predicting the position-dependent limiting cutting depth,which can be used to determine the milling stability constraint.Then,a process parameters optimization model of multi-passes milling for minimizing cutting time is established.Displacements of the machine tool moving parts and cutting parameters for rough and finish milling processes are taken as variables.The particle swarm optimization algorithm(PSO)is utilized to solve this optimization model.A case study is implemented on a vertical machining center.The optimal combination of machining position and cutting parameters can be obtained,including the spindle speed,cutting depth,cutting width and feed rate per tooth.The total cutting time of the rough and finish processes decreases 22.47%after the optimization.There is no chatter during the milling process,which verifies the feasibility of the proposed optimization model.
作者 邓聪颖 杨凯 苗建国 马莹 冯义 Deng Congying;Yang Kai;Miao Jianguo;Ma Ying;Feng Yi(不详;School of Advanced Manufacturing Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Aeronautics and Astronautics,Sichuan University,Chengdu 610065,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期111-118,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51705058) 中国博士后科学基金(2018M633314) 重庆市基础科学与前沿技术项目(cstc2017jcyjAX0005) 重庆市博士后科研项目(XmT2018040)资助。
关键词 加工位置 多工步铣削 参数优化 广义回归神经网络 machining position multi-pass milling parameters optimization general regression neural network(GRNN)
  • 相关文献

参考文献12

二级参考文献113

  • 1李忠群,刘强,郑敏,王鑫.基于Z-map的弱刚性系统高速周铣表面加工精度[J].华中科技大学学报(自然科学版),2012,40(S2):52-55. 被引量:5
  • 2李忠群,刘强.基于MATLAB的铣削加工颤振稳定域仿真算法及实现[J].机械设计与制造,2007(7):109-111. 被引量:9
  • 3Sonmez A I,Baykasoglu A,Dereli T. Dynamic Opti-mization of Multipass Milling Operations via Geo-metric Programming [J]. International Journal ofMachine Tools Manufacture 1999, 39 (2): 297 -.
  • 4Rao Venkata R,Kalyankar V D. Multi-pass TurningProcess Parameter Optimization Using Teaching -learning-based Optimization Algorithm [J]. Scien-tialranica E,2013,20(3) :967-974.
  • 5Ali R, Yildiz. Optimization of Cutting Parameters inMulti - pass Turning Using Artificial Bee Colony-based Approach CJInformation Sciences,2013,220:399-407.
  • 6Ganesan H. Optimization of Machining Parametersin Turning Process Using Genetic Algorithm andParticle Swarm Optimization Using ExperimentalVerification[J]. International Journal of EngineeringScience and Technology,2011 .2(3) : 1091-1102.
  • 7Kumar V S S, Ezilarasan C, Kumaran S S. Experi-mental Investigation and Optimization of CuttingParameters in Machining of Ti6 A14V Alloy by anMT- CVD Insert [J]. Journal of the Institution ofEngineers: India,2013 .94(2) : 155-163.
  • 8Li Jianguang,Lu Yong,Zhao Hang,et al. Optimiza-tion of Cutting Parameters for Energy Saving [J].The International Journal of Advanced Manufactur-ing Technology,2014,70(4) :117-124.
  • 9Wang J. Multiple-objective Optimization of Machi-ning Operations Based on Neural NetworksCj]. In-ternational Journal of Advanced ManufacturingTechnology, 1993(8) :235-243.
  • 10王先逵.机械加工工艺手册(铣削、锯削加工)[M].北京:机械工业出版社,2009.

共引文献180

同被引文献66

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部