期刊文献+

Enhancement algorithm for underwater weld seam image

下载PDF
导出
摘要 It is hard to treat the underwater weld seam images for the reason of bad brightness, low contrast and less welding seam information, so a new enhancement algorithm is proposed here. Firstly, the high frequency component was separated by Gaussian filter from origin image, and then it is processed by improved local contrast enhancement(LCE) algorithm to enhance the edge information. Secondly, the gamma transform with adaptive parameters was used to strengthen the image brightness, furthermore, contrast limited adaptive histogram equalization(CLAHE) algorithm was applied to enhance the image contrast. Finally, the two manipulated images were integrated together to obtain the desired image. Experiments on typical images were carried out, and evaluation results showed that this designed algorithm can effectively improve image contrast, highlight welding seam information. Moreover, the image average grey value was moderate, and the information entropy and average gradient were much higher than other algorithms.
作者 Ye Jianxiong Liu Chenglin Zhang Zhiwei Peng Xingling 叶建雄;刘承林;张志伟;彭星玲(Zhejiang Institute of Mechanical&Electrical Engineering,Hangzhou 310053,China;Nanchang Institute of Technology,Nanchang 330029,China)
出处 《China Welding》 EI CAS 2020年第2期23-29,共7页 中国焊接(英文版)
基金 Project was supported by the National Science Foundation of China(Grant No.51665016)。
  • 相关文献

参考文献7

二级参考文献52

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2梅跃松,杨树兴,莫波.基于Canny算子的改进的图像边缘检测方法[J].激光与红外,2006,36(6):501-503. 被引量:30
  • 3Kenneth RCastleman. Digital image processing [ M ]. Bei- jng: Publishing House of Electronics Industry, 1998.
  • 4I Maria Petrou. Image processing the fundamental [ M ]. Beijing: China Machine Press ,2005.
  • 5Rafael CGonzalez. Digital image processing[ M]. 2nd ed. Bei- jing:Publishing House of Electronics Industry,2006.
  • 6Kass M, Witkin M,Terzopoulos D. Snakes : Active Contour Models [ J ]. International Journal of Computer Vision, 1987,4( 1 ) :321 - 331.
  • 7Wang Y H, Liu H W. A hierarchical ship detection scheme for high resolution SAR images[J]. IEEE Trans. on Geoscience and Remote Sensing, 2012, 50(10) : 4173 -4184.
  • 8Kreithen D E, Halversen S D, Owirka G J. Discriminating tar gets from clutter[J]. The Lincoln Laboratory Journal, 1993, 6 (1) :25 - 52.
  • 9Weisenseel R A, Karl W C, Castanon D A, et al. Markov ran- dora field segmentation methods for SAR target ehips[J]. Pro- ceedings of the SPIE,1999,3721:462 - 473.
  • 10Yu H, Zhang X, Wang S, et al. Context-based hierarchical une qual merging for SAR image segmentation]. IEEE Trans. on Geoscience and Remote Sensing, 2013, 51(2) : 995 - 1009.

共引文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部