期刊文献+

基于DeepLink的社交网络去匿名方法

De-anonymiation method for networks based on DeepLink
下载PDF
导出
摘要 现有的社交网络去匿名方法主要是基于网络结构,对网络结构进行学习与表示是去匿名的关键。用户身份链接(user identity linkage)的目的是检测来自不同社交网络平台的同一个用户。基于深度学习的跨社交网络用户对齐技术,很好地学习了不同社交网络的结构特征,实现了跨社交网络的用户对齐。将该技术用于同一社交网络匿名用户识别,实验结果优于传统去匿名方法。 Existing de-anonymization technologies are mainly based on the network structure.To learn and express network structure is the key step of de-anonymization.The purpose of the user identity linkage is to detect the same user from different social networking platforms.DeepLink is a cross-social network user alignment technology.It learns the structural of the social networks and align anchor nodes through deep neural networks.DeepLink was used to identify de-anonymization social networks,and the results outperforms the traditional methods.
作者 王培 贾焰 李爱平 蒋千越 WANG Pei;JIA Yan;LI Aiping;JIANG Qianyue(College of Computer,National University of Defense Technology,Changsha 410073,China)
出处 《网络与信息安全学报》 2020年第4期104-108,共5页 Chinese Journal of Network and Information Security
基金 国家重点研究发展计划基金(2017YFB0802204,2016YFB0800303,2017YFB0803301,2016QY03D0603,2016QY03D0601,2016QY01W0101) 国家自然科学基金(61732004,61732022,61502517,61472433,61672020,U1803263) 东莞创新研究团队计划(2018607201008)。
关键词 匿名 去匿名 隐私 社交网络 图数据 anonymization de-anonymization privacy social network graph data
  • 相关文献

参考文献2

二级参考文献8

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部