期刊文献+

基于机器学习的无线传感器网络入侵检测算法 被引量:8

Machine learning-based intrusion detection technology for wireless sensor networks
下载PDF
导出
摘要 针对资源受限的无线传感器网络入侵检测效果不佳的问题,本文提出了一种基于机器学习的无线传感器网络入侵检测算法。该算法将数据局部密度和数据特征距离引入模糊聚类,提高了聚类有效性的同时降低了聚类收敛的时间;该算法将聚类得到的模糊隶属度作为模糊因子应用于模糊支持向量机,降低了人为选取模糊因子造成的主观性,将噪声点和孤立点对分类造成的影响降至最低。以WSN-DS数据集为实验数据,理论分析及实验结果表明:本文提出的入侵检测算法具有检测率高、计算复杂度低等特性,能够适用WSNs这一应用场景。 This study aims to optimize the resource-limited wireless sensor networks(WSNs)intrusion detection algorithm proposing an algorithm based on machine learning.First,the algorithm introduces the data of local density and feature distance into a fuzzy clustering method,which improves the clustering effectiveness and reduces the time of cluster convergence.Second,the algorithm applies the fuzzy membership degree,which is obtained by the improved fuzzy clustering method,as the fuzzy factor to the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor and minimize the impact of the noise and isolated points on the classification.The WSN-DS dataset is used as an experimental dataset.The theoretical and experimental results show that the proposed intrusion detection algorithm is characterized by a high detection rate and a low computational complexity,and can be applied to the scenario of WSNs.
作者 罗富财 吴飞 陈倩 何金栋 寇亮 LUO Fucai;WU Fei;CHEN Qian;HE Jindong;KOU Liang(State Grid FUJIAN Electronic Power Company Information Center,Fuzhou 350003,China;College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第3期433-440,共8页 Journal of Harbin Engineering University
基金 中央高校自由探索基金项目(HEUCF100606).
关键词 无线传感器网络 信息安全 入侵检测 机器学习 模糊聚类 密度感知 模糊支持向量机 模糊因子 wireless sensor network information security intrusion detection machine learning fuzzy clustering density awared fuzzy support vector machine fuzzy factor
  • 相关文献

参考文献6

二级参考文献56

共引文献165

同被引文献107

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部