期刊文献+

密实度对垂直轴潮流能水轮机水动力性能影响分析 被引量:2

Impact Analysis of Density on Hydrodynamic Performance of Vertical Axis Tidal Energy Turbine
下载PDF
导出
摘要 为研究密实度对垂直轴潮流能水轮机水动力性能的影响,从水轮机直径、叶片数及叶片弦长三个方面考虑密实度的变化,采用CFD数值模拟方法得到不同密实度的水轮机的水动力性能,并总结出规律。研究结果表明:推力系数和侧向力系数均值均随密实度的增加而增加,而能量利用率均值随密实度的变化规律与速比相关;能量利用率、推力系数和侧向力系数的波动幅值随密实度的改变而发生变化,变化规律与导致密实度变化的参数相关。研究成果可为垂直轴潮流能水轮机的选型提供一定的参考依据。 In order to study the influence generated by the density for the hydrodynamic performance of the vertical axis tidal energy turbine,the change of density is considered from three aspects of turbine diameter,number of blades and chord length of blade.The hydrodynamic performance of the turbines with different density is obtained by CFD numerical simulation,and the regulation is summarized.The research results showed that the mean values of thrust and lateral force coefficients raise along with the increase of compactness,and the change regulation of the mean value of energy utilization rate along with the density is related to the tip speed ratio.Meanwhile,the fluctuation amplitudes of energy utilization rate,thrust and lateral force coefficients change while the density alters,and the regulation of change is related to the parameters that lead to the change of density.The research findings can provide the reference for the selection of vertical axis turbines.
作者 陈宇 王树齐 江南 CHEN Yu;WANG Shu-qi;JIANG Nan(School of Naval Architecture and Ocean Engineering Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《浙江海洋大学学报(自然科学版)》 CAS 北大核心 2020年第1期65-70,共6页 Journal of Zhejiang Ocean University:Natural Science
基金 国家自然科学基金(51709137)。
关键词 潮流能 垂直轴水轮机 密实度 水动力性能 tidal current energy vertical axis turbine density hydrodynamic performance
  • 相关文献

参考文献4

二级参考文献52

  • 1ANSYS CFX Release 13.0 help. Mechanical user guide. Documentation ANSYS Europe, Ltd.
  • 2Batten WMJ (2007). Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Journal of Ocean Eng., 34(7), 1013-1020.
  • 3Charlier RH (2003). A "sleeper" awakes: tidal current power. Renewable and Sustainable Energy Reviews, 7(6), 515-29.
  • 4Coiro DP, Maisto U, Scherillo F, Melone S, Grasso F (2006). Horizontal axis tidal current turbine: Numerical and experimental investigations. Proceedings of the OWEMES, Civitavecchia, Italy, 20-22.
  • 5Drees HM (1978). The Cycloturbine and its Potential for Broad Application. 2^nd International Symposium on Wind Energy Systems, 3-6, E7-82-E7-88.
  • 6Edinburgh Design Ltd (2006). Variable pitch foils vertical axis tidal turbine final report. Project T/06/00234/00/00.Available at http://webarchive.nationalarchives.gov.uk/+/http://www.berr.go v.uk/files/file30557.pdf [accessed on 05-06-2012].
  • 7GCK Technology. http://www.lucidenergy.com/gck [accessed on 04.04.2012].
  • 8Golecha K, Eldho TI, Prabhu SV (2012). Study on the interaction between two hydrokinetic savonius turbines. Journal of Rotating Machinery, 2012 (2012), 1 - 10.
  • 9Hyman JM, Knapp R, Scovel JC (1992). High order finite volume approximations of differential operators on non-uniform grids. Physica D, 60, 112-138.
  • 10Khan M, Bhuyan G, lqbal M, Quaicoe J (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Journal of Applied Energy, 86(10), 1823-1835.

共引文献14

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部