期刊文献+

大数据分析方法在机采井评价中的应用

Application of Big Data Analysis Method in Evaluation of Mechanical Recovery Well
下载PDF
导出
摘要 由于影响机采井系统效率的因素很多,主要因素并不十分明确,在评价油井的生产和工作过程中,大部分石油公司没有一个系统、全面的评价体系。论文基于塔河油田机采井生产数据库的海量数据,开发了大数据分析软件,通过灰色关联分析理论,确定了影响塔河油田机采井系统效率的关联指标,并给出了沉没度、泵效、回压等指标的控制范围,在指标控制范围内可提高机采井的系统效率,对机采井的生产控制有着重要意义,也可为石油其它领域数据分析提供借鉴。 Because there are many factors that affect the efficiency of a mechanical recovery well system,the main factors are not very clear.In the process of evaluating the production and work of oil wells,most oil companies do not have a systematic and comprehensive evaluation system.Based on the massive data of the mechanical recovery well production database in Tahe Oilfield,this paper develops big data analysis software.Through the grey correlation analysis theory,the relevant indicators affecting the efficiency of the mechanical recovery well system in Tahe Oilfield are determined,and gives the control range of the index of submergence depth,pump efficiency,back pressure,etc.Within the control range of this index,the system efficiency of the mechanical recovery well can be improved,which is of great significance to the production control of the mechanical recovery well,and can also provide reference for data analysis in other fields of petroleum.
作者 刘洋 宋彦生 LIU Yang;SONG Yan-sheng(China Northwest Oilfield Company of China Petroleum and Chemical Corporation,Urumqi 830011,China;College of Pipeline and Civil Engineering,China University of Petroleum(East China),Qingdao 266580,China)
出处 《价值工程》 2020年第23期246-248,共3页 Value Engineering
关键词 机采井 效率 评价指标 大数据 mechanical recovery well efficiency evaluation index big data
  • 相关文献

参考文献9

二级参考文献75

  • 1陈兴元.从合理配置源头提高机采系统效率[J].节能与环保,2005(3):39-41. 被引量:17
  • 2林日亿,孙茂盛,张邵东,吴信荣,李兆敏,李松岩.有杆抽油泵沉没度的优化设计方法[J].石油大学学报(自然科学版),2005,29(4):87-90. 被引量:37
  • 3李其,刘殿魁,李晓秋.在用抽油杆服役期限的确定方法[J].东北林业大学学报,2006,34(1):111-112. 被引量:8
  • 4景玉梅,张瞳阳.抽油机井合理沉没度确定与治理实践[J].大庆石油地质与开发,2006,25(B08):70-72. 被引量:30
  • 5维克托.麦尔-舍恩伯格,肯尼思.库克耶著,盛杨燕,周涛译.大数据时代[M].浙江人民出版社.
  • 6涂子沛著.大数据tM].广西师范大学出版社.
  • 7MichaelR.Brule.Real -Time Analytics and Data -FlowArchitecture. SPE Digital Energy Conference and Exhibition held inThe Woodlands, Texas,USA.May,2013.
  • 8JillFeblowitz. Analytics in oil and gas: the Big Deal aboutBig data. SPE Digital Energy Conference and Exhibition held in TheWoodlands, Texas,USA.May,2013.
  • 9McAfee,A”Brynjolfson,E.,2012.BigData: The ManagementRevolution , p.60,Harvard Business Review. October.
  • 10Balto,A.etal.2012.The Use of Real -Time Distributed -Temperature and Downhole 一Pressure Surveying to Quantify Skinand Zone Coverage in Horizontal -Well Stimulation. SPE 155723presented at the SPE Annual Technical Conference and Exhibitionheld in San Antonio, Texas, USA, 8-10 October.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部