期刊文献+

二进制域上椭圆曲线密码ECC的高性能FPGA实现 被引量:3

High-performance FPGA Implementation of Elliptic Curve ECC on Binary Domain
下载PDF
导出
摘要 近年来,通信领域得到了巨大的发展,网上银行、移动通信等应用增加了资源受限环境下的安全需求。与传统密码算法相比,椭圆曲线密码体制(Elliptic curve cryptography,ECC)提供了更好的安全标准,为优化性能参数提供了更大的空间。为此,文中提出了一种高效的椭圆曲线密码硬件设计方案。该方案在已有研究的基础上,利用投影坐标系LD Montgomery阶梯算法对ECC中最核心的标量乘运算进行了研究,并对群运算层采用并行调度来缩短延迟;对于有限域运算,采用位并行乘法算法和改进的Euclidean求逆算法来实现;基于Xilinx Virtex-5和Virtex-7FPGA器件,在二进制域域长分别为163,233和283时实现了该体系结构。实验结果表明,该方案所需现场可编程门阵列(Field-Programmable Gate Array,FPGA)资源消耗更少,运算速度更快,与其他方法相比,硬件资源消耗减少了52.9%,标量乘法运算速度提高了5倍,能更好地适用于资源受限设备的应用。 In recent years,the communications field has achieved tremendous development.Applications such as online banking and mobile communications have increased the security requirements in resource-constrained environments.Compared with traditional cryptographic algorithms,elliptic curve cryptosystem(ECC)provides better security standards and more space for optimizing performance parameters.Therefore,an efficient elliptic curve cipher hardware design scheme is proposed.Based on the exis-ting research,the proposed scheme uses the projected coordinate system LD Montgomery ladder algorithm to study the core scalar multiplication operation in ECC,and uses parallel scheduling to reduce delay in the group operation layer.For finite field ope-rations,the bit-parallel multiplication algorithm and improved Euclidean inverse algorithm are adopted.Based on Xilinx Virtex-5 and Virtex-7 FPGA device,the architecture is implemented on the binary domains with lengths of 163,233 and 283 respectively.The experimental results show that the proposed scheme requires less FPGA resource consumption and faster calculation speed.Compared with other methods,the hardware resource consumption is reduced by 52.9%and the scalar multiplication operation speed is increased by 3.7 times,so it is better suitable for the application of resource-constrained devices.
作者 尤文珠 葛海波 YOU Wen-zhu;GE Hai-bo(School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《计算机科学》 CSCD 北大核心 2020年第8期127-131,共5页 Computer Science
基金 陕西省自然科学基金(2011JM8038) 陕西省重点产业创新链(群)项目(S2019-YF-ZDCXL-ZDLGY-0098)。
关键词 现场可编程门阵列 二进制域 椭圆曲线密码体制 标量乘法 求逆 Field-programmable gate array Binary extension field Elliptic curve cryptography Scalar multiplication Inversion
  • 相关文献

参考文献2

二级参考文献20

  • 1杨盛光,王晓蕾,刘聪,高明伦.RSA算法的硬件实现[J].仪器仪表学报,2003,24(z2):313-316. 被引量:2
  • 2KOBLITZ N. Elliptic curve cryptosystems [ J ]. Mathematics of Computation, 1987,48(177) :203-208.
  • 3MILLER V S. Use of elliptic curves in cryptosystems [ J]. Advances in Crypto'55. Lecture Notes in Computer Science. Spring-Verlag Berlin, 1985:417426.
  • 4CIET M, JOYE M, LAUTER K. Trading inversions for multiplications in elliptic curve cryptography [ J ]. Designs, Codes and Cryptography, 2006,39 (2) : 189-20.
  • 5SAKAI Y, SAKURAI K. Efficient scalar multiplications on elliptic curves with direct computer actions of several doublings[ J ]. IEICE Trans on Fundamentals, 2001.
  • 6HANKERSON D, HERNANDEZ J L, MENEZESA. Software implementation of elliptic curve cryptography over binary[ C ]. Proc of the 2nd International Workshop on Cryptographic Hardware and Embedded Systems. London : Springer Verlag, 1999 : 1-2.
  • 7AYDOS M, YANIK T, KOC C K. High-speed imple- mentation of an ECC-based wireless authentication proto- col on an ARM micro-processor [ J ]. IEEE Proceedings on Communications, 2001,148(5 ) :273-279.
  • 8HANKERSON D, MENEZES A, VANSTONE S 著,张焕国译.椭圆曲线加密算法导论[M].北京:电子工业出版社,2005:45-46,74-76,91-92.
  • 9Koblitz N. A Course in Number Theory and Cryptography[M]. Heidelberg: Springer-Verlag, 1994.
  • 10Miller V. Uses of Elliptic Curves in Cryptography[C]//Advances in Cryptology CRYPTO'85, Lecture Notes in Computer Science. Heidelberg: Springer, 1986: 417-426.

共引文献9

同被引文献30

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部