期刊文献+

改进ILoG算子的故障检测方法

Fault Detection Method Based on Improved Laplacian of Gaussian Operator
下载PDF
导出
摘要 针对强背景噪声干扰下轮对轴承故障特征微弱、难以准确检测的问题,提出了一种自适应改进高斯拉普拉斯(improved Laplacian of Gaussian,简称ILoG)算子的微弱故障检测方法。ILoG算子滤波器具有优良的信号突变特征检测能力,将其用于轮对轴承故障信号的冲击特征检测,同时利用水循环算法(water cycle algorithm,简称WCA)的寻优特性,并行搜寻筛选最佳的ILoG算子影响参数,通过对参数优化后ILoG算子滤波后信号做进一步包络解调分析,提取出轮对轴承微弱的故障特征信息。对实际轮对轴承外圈和内圈故障信号分析的结果表明,该方法可以有效检测出轴承微弱故障特征频率,故障检测效果优于小波阈值和多尺度形态学差值滤波方法。 The weak fault features of wheel bearing are difficult to accurately detect because of the interference of strong background noise.Aiming at the problem,this paper presents a novel method named self adaptive improved Laplacian of Gaussian(ILoG)operator to detect the weak fault features of wheel bearing.The ILoG operator filter has excellent ability to detect the sudden change of signals,which is applied to detect the fault impulse characteristics in bearing fault signals.In addition,water cycle algorithm(WCA)with good optimization characteristic is used to search for the influencing parameters of ILoG operator in order to achieve the best filtering results.The envelope demodulation method is further used to analyze the best filtering signals of the optimized ILoG operator and extract weak fault features.The proposed method is applied to analyze wheel bearings with outer race and inner race fault,and the results show that this method can detect the weak fault characteristic frequencies of bearings effectively.The filtering effect is better than the wavelet threshold denoising and multi-scale morphological difference filter methods.
作者 邓飞跃 杨绍普 宋文涛 韩飞 郝如江 DENG Feiyue;YANG Shaopu;SONG Wentao;HAN Fei;HAO Rujiang(State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety,Shijiazhuang Tiedao University Shijiazhuang,050043,China;School of Mechanical Engineering,Shijiazhuang Tiedao University Shijiazhuang,050043,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2020年第4期695-701,822,823,共9页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(11802184,11790282) 河北省自然科学基金资助项目(E2019210049) 河北省高等学校科学技术研究资助项目(QN2018016,QN2018025)。
关键词 轮对轴承 微弱故障 特征提取 高斯拉普拉斯算子 水循环算法 wheel bearing weak fault feature extraction Laplacian of Gaussian filter water cycle algorithm
  • 相关文献

参考文献6

二级参考文献63

共引文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部