期刊文献+

基于谱归一化生成对抗网络的目标SAR图像仿真方法 被引量:1

Simulation Method of Target SAR Image Based on Spectral Normalization Generative Adversarial Network
下载PDF
导出
摘要 为解决合成孔径雷达(Synthetic Aperture Radar,SAR)自动目标识别(Automatic Target Recognition,ATR)中的数据稀疏问题,提出一种基于谱归一化生成对抗网络(Spectral Normalization Generative Adversarial Network,SN-GAN)的目标SAR图像仿真方法。本文方法通过构建目标—场景—雷达耦合物理模型,求解散射强度分布图,利用SN-GAN实现对散射强度分布图的优化,生成高质量仿真SAR图像。通过3种相似性评估算法对仿真图像进行相似度评估,验证本文仿真方法的有效性。最后通过多组SAR ATR进行实验验证,在训练集中加入SN-GAN优化的仿真SAR图像可以有效缓解数据稀疏问题,提升分类算法的准确率。 In order to solve the data sparse problem in Synthetic Aperture Radar(SAR)Automatic Target Recognition(ATR),this paper proposes a simulation method of target SAR images based on SN-GAN(Spectral Normalization Generative Adversarial Network).The method obtains the scattering intensity distribution maps by constructing the coupled physical model among target,scene and radar,then refines the scattering intensity distribution maps by using SN-GAN to generate the high-quality simulated SAR images.The similarity evaluation of the simulated images is carried out by 3 kinds of similarity evaluation algorithms to verify the effectiveness of the simulation method.Finally,through multiple sets of SAR ATR experiments,it is verified that adding simulated SAR images optimized by SN-GAN to the training set can effectively alleviate the data sparse problem and improve the accuracy of the classification algorithms.
作者 孙智博 徐向辉 SUN Zhi-bo;XU Xiang-hui(Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;University of Chinese Academy of Sciences, Beijing 100049, China;Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
出处 《计算机与现代化》 2020年第8期14-20,共7页 Computer and Modernization
基金 国家重点研发计划项目(2017YFB0503001)。
关键词 SAR图像 图像仿真 SN-GAN SAR image image simulation SN-GAN
  • 相关文献

参考文献2

二级参考文献11

  • 1计科峰,匡纲要,黄继军.高频区复杂目标宽带雷达特征信号仿真[J].计算机仿真,2005,22(6):32-36. 被引量:8
  • 2阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,1998..
  • 3Shillington K R,Jahans P A,Buller E H,et al.An ISAR simulator for ships[C]// Antennas and Propagation Society International Symposiuml.London,Ont.,Canada:IEEE,1991:1032-1035.
  • 4Bhalla R,Hao Ling.A fast algorithm for signature prediction and image formation using the shooting and bouncing ray technique[J].IEEE Transactions on Antennas and Propagation (S0018-926X),1995,43(7):727-731.
  • 5Rius J M,Ferrando M,Jofre L.High-frequency RCS of complex radar targets in real-time[J].IEEE Transactions on Antennas and Propagation (S0018-926X),1993,35(2):1308-1319.
  • 6Yang Zhenglong,Jin Lin,Li Weiqing.Accelerated GRECO based on GPU[C]// 2006 CIE International Conference on Radar.Shanghai,China:IEEE,2006:1-4.
  • 7Balz T,Haala N.Improved Real-Time SAR Simulation in Urban Areas[C]// Geoscience and Remote Sensing Symposium,2006.IGARSS 2006.IEEE International Conference.Denver,CO,USA:IEEE,2006:3631-3634.
  • 8Qi Bin.OpenSARSim[CP/OL] (2007-03-28)[2007-04].http://www.sourceforge.net/projects/opensarsimongpu.
  • 9Gerard Margarit,Pablo Blanco,Jesus Sanz,et al.Simulation of fishing vessel polarimetric signatures as first step to vessel classification[C]// SAR Image Analysis,Modeling,and Techniques VI.VI:SPIE,V5236,2004:154-163.
  • 10罗宏,许小剑,黄培康,吴兴无,赫荣奎.目标宽带雷达特征信号的建模与预测[J].电子学报,1999,27(9):41-44. 被引量:7

共引文献10

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部