期刊文献+

集成基于对象影像分析与贝叶斯软融合的土地覆被变化检测 被引量:3

Land cover change detection based on the object-based image analysis and Bayesian soft fusion method
下载PDF
导出
摘要 应用遥感数据进行分类后变化检测时,土地覆被分类误差会造成严重的误差累积效应,同时会导致土地覆被类型转换结果中经常出现不尽合理的情况.采用基于对象的影像分析方法,利用两期国产高分一号影像数据分析了兰州市建成区及其东南部边缘地区的土地覆被变化.通过分析研究区的特征,得到了研究区的土地覆被转移逻辑.利用贝叶斯软融合方法降低了土地覆被变化分类误差的累积效应,运用土地覆被逻辑,消除了不合逻辑的结果,变化检测结果总精度达到81.61%.最终得出了兰州市总体上沿沟谷地向周边东南方向延伸的发展模式. Using remote sensing data for post-classification change detection will result in land cover classification errors that will, in turn, cause serious errors in accumulation effects and, at the same time, will lead to unreasonable situations in land cover type conversion results. The object-based image analysis method was used to analyze the land cover changes in the built-up area of Lanzhou City and its southeastern marginal area based upon the two-stage domestic high score image data. With an analysis of the characteristics of the study area, the land cover transfer logic thereof was obtained. The Bayesian soft fusion method was used to reduce the cumulative effect of land cover change classification errors and the land cover logic was used to eliminate the illogical results. The total accuracy of the change test results was81.61%. It was concluded that a development model had been generally formed along the valley to the southeast in Lanzhou.
作者 刘巨峰 刘勇 蒋月 陆海霞 何江 Liu Ju-feng;Liu Yong;Jiang Yue;Lu Hai-xia;He Jiang(College of Resources and Environment,Lanzhou University,Lanzhou 730000,China;613163 Unit,People's Liberation Army of China,Xian 710054,China)
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期196-204,共9页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(41271360)。
关键词 土地覆被 基于地理对象的影像分析 高分一号 贝叶斯软融合 兰州市 land cover image analysis based on geographic objects high score one Bayesian soft fusion Lanzhou City
  • 相关文献

参考文献12

二级参考文献179

共引文献286

同被引文献60

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部