期刊文献+

VMD改进GFCC的情感语音特征提取 被引量:2

Feature extraction of emotional speech based on improved GFCC with VMD
下载PDF
导出
摘要 传统特征提取忽略了语音信号的非稳态特性,变分模态分解技术可以精细刻画语音的非平稳性,因此利用该技术将情感语音信号分解为K个固有模态函数,对每个分量做快速傅里叶变换后进行频率合成,通过Gammatone滤波器取能量对数,经离散余弦变换得到新特征变,即分模态分解改进Gammatone频率倒谱系数。通过支持向量机进行语音情感识别,实验结果表明,TYUT2.0中的识别率为72.15%,柏林情感语音库中的识别率为91.10%,识别效果优于传统情感语音特征,验证了该特征的有效性。 The traditional feature extraction ignores the non-stationarity of the speech signal,and the variational mode decomposition(VMD)technique can finely describe the non-steady state of speech.Therefore,a feature of improved Gammatone frequency cepstral coefficients based on VMD(VGFCC)was proposed.The steps of extracting VGFCC included decomposing signal into K intrinsic mode function(IMF)components using VMD,implementing fast fourier transform(FFT)for each IMF,frequency synthesis,Gammatone filter,logarithm,discrete cosine transform(DCT)and calculating statistical parameters.The extracted VGFCC was used to identify different emotions through the support vector machine(SVM).Experimental results show that VGFCC is superior to traditional emotional features,the recognition rate in TYUT 2.0 is 72.15%,and the recognition rate in EMO-DB is 91.10%.So the validity of the presented VGFCC is demonstrated.
作者 刘雨柔 张雪英 陈桂军 黄丽霞 张静 LIU Yu-rou;ZHANG Xue-ying;CHEN Gui-jun;HUANG Li-xia;ZHANG Jing(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《计算机工程与设计》 北大核心 2020年第8期2265-2270,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61371193) 山西省应用基础研究基金项目(青年)(201701D221117)。
关键词 特征提取 变分模态分解 变分模态分解改进Gammatone频率倒谱系数 语音情感识别 情感语音特征 feature extraction VMD VGFCC speech emotion recognition emotional speech feature
  • 相关文献

参考文献8

二级参考文献70

  • 1王伟,邓辉文.基于MFCC参数和VQ的说话人识别系统[J].仪器仪表学报,2006,27(z3):2253-2255. 被引量:30
  • 2韩文静,李海峰,韩纪庆.基于长短时特征融合的语音情感识别方法[J].清华大学学报(自然科学版),2008,48(S1):708-714. 被引量:20
  • 3彭圆,王晟,王科俊,李雪耀,林良骥,林正青,王建文.感知线性预测在水下目标分类中的应用研究[J].声学学报,2006,31(2):146-150. 被引量:16
  • 4Park J S, Kim J H.Feature vector classification based speech emotion recognition for service robots[J].IEEE Transactions on Consumer Electronics, 2009, 55 (3) :1590-1596.
  • 5Elliot M,Clements M,Peifer J,et al.Investigating the role of glottal features in classifying clinical depression[C]// 25th Annual International Conference of the IEEE Engi- neering in Medicine and Biology Society,2003:2849-2852.
  • 6Xia M, Lijiang C, Liqin EMulti-level speech emotion rec- ognition based on HMM and ANN[C]//2009 World Con- gress on Computer Science and Information Engineering, 2009: 225-229.
  • 7Levonen M J,Persson L,McLaughlin S.Conditioning lo- fargrams using empirical mode decomposition[C]//The 7th Nordic Signal Processing Symposium, 2006 : 170-173.
  • 8熊文卓,孔智勇,张炜.光电轴角编码器光电信号正交性偏差的相量校正方法[J].光学精密工程,2007,15(11):1745-1748. 被引量:41
  • 9Tucker S, Brown G J. Classification of Transient Sonar Sounds Using Perceptually Motivated Features [ J ]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 588-600.
  • 10Valero X, Alias F. Gammatone Cepstral Coefficients: Biologically Inspired Feature for Non-Speech Audio Classification [ J ]. IEEE Trans on Multimedia, 2012, 14(6) : 1684-1689.

共引文献94

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部