期刊文献+

一种改进增量非负矩阵分解人脸识别算法研究 被引量:1

Research on an Improved Incremental Non-Negative Matrix Factorization Face Recognition Algorithm
下载PDF
导出
摘要 针对人脸面部图像辨识易受非均匀光照因素的影响,从而降低识别率问题,提出一种改进的人脸识别算法。首先,通过使用中心对称局部二阶微分模式提取人脸图像的二阶微分表征向量;其次,利用改进的增量非负矩阵分解(IINMF)算法来训练人脸图像样本的类别信息进而提取人脸图像表征向量,同时提高了算法迭代优化求解时的收敛机能;然后使用典型相关性分析(CCA)合并CS-LDP和IINMF提取的人脸面部图像表征向量获得融合后的人脸图像表征向量,最后利用最近邻分类器进行分类,获得最后的辨识结果。实验结果表明,提出的算法对光照下的识别具有较高的识别率,拥有良好的实时性和鲁棒性。 An improved face recognition algorithm is proposed to reduce the recognition rate of facial image recognition which is susceptible to non-uniform illumination.Firstly,the second order differential representation vectors of face images are extracted by using the central symmetric local second order differential mode(CS-LDP).Secondly,the improved incremental non-negative matrix decomposition(IINMF)algorithm is used to train the category information of face image samples and then extract the face image representation vector.Meanwhile,the convergence function of iterative optimization algorithm is improved.Then,canonical correlation analysis(CCA)was used to combine the facial image representation vectors extracted by CS-LDP and IINMF to obtain the fused facial image representation vectors.Finally,the nearest neighbor classifier was used for classification to obtain the final recognition results.Simulation results show that the proposed algorithm has high recognition rate,good real-time performance and robustness for illumination recognition.
作者 伊力哈木·亚尔买买提 吐松江·卡日 YILihamu YAErmaimaiti;Tusongjiang Kari(School Of Electrical Engineering,Xinjiang University,Urumqi Xinjiang 830047,China)
出处 《计算机仿真》 北大核心 2020年第7期309-313,共5页 Computer Simulation
基金 国家自然科学基金(61866037,61462082)。
关键词 非均匀光照 中心对称局部二阶微分模式 改进的增量非负矩阵分解 典型相关性分析 Non-uniform illumination Centrosymmetric local second order differential model Improved incremental nonnegative matrix decomposition Canonical correlation analysis
  • 相关文献

参考文献11

二级参考文献77

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 2Forstner W, Giilch E. A fast operator for detection and preciselocation of distinct points,comers and centres of circular features[C ] //Proceedings of Intercommission Conference on Fast Pro-cessing of Photogrammetric Data. Interlaken, Switzerland : IS-PRS, 1987:281-305.
  • 3Harris C,Stephens M, A combined comer and edge detector[C ] //Proceedings of the 4th Alvey Vision Conference. Manches-ter, UK:The Plessey Company, 1988: 147-151.
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints [ J ] . International Journal on Computer Vision, 2004,60(2) :91-110.
  • 5Mikolajczy K,Schmid C. A performance evaluation of local de-scriptors [J ] . IEEE Transactions on Pattern Analysis andMachine Intelligence, 2005, 27(10) :1615-1630.
  • 6Fischler M A,Bolles R C. Random sample consensus : a para-digm for model fitting with applications to image analysis and au-tomated cartography [ J] . Communications of the ACM, 1981,24(6):381-395.
  • 7张振国,童天添.眼镜行业计算机选镜及虚拟试戴技术研究[J].微计算机信息,2007,23(30):45-46. 被引量:2
  • 8He D C and Wang L. Texture unit, texture spectrum, andtexture analysis[J]. IEEE Transactions on Remote Sensing,1990, 28(4): 509-512.
  • 9Ojala T,Pietikainen M,and Harwood D. A comparativestudy of texture measures with classification based on featuredistributions[J].Pattern Recognition, 1996, 29(1): 51-59.
  • 10Ojala T, Pietikainen M, and Maenpaa T. Multi-resolutiongrayscale and rotation invariant texture classification withlocal binary patterns [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2002,24(7): 971-987.

共引文献133

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部