期刊文献+

基于聚类和奖惩用户模型的协同过滤算法 被引量:3

Collaborative Filtering Algorithm Based on Clustering and Incentive/Penalty User Model
下载PDF
导出
摘要 根据用户体验为其推荐感兴趣的项目是推荐系统中最重要的问题.本文提出了一种新的易于实现的CBCF(Clustering-Based CF)算法,该算法基于激励/惩罚用户(IPU)模型进行推荐.本文旨在通过IPU模型深入研究用户间偏好的差异来提高准确率、召回率和F1-score方面的性能.本文提出了一个约束优化问题,目标是在给定的精度下最大限度地提高召回率(或F1-score).为此,根据实际评分数据和皮尔逊相关系数,将用户分为若干用户簇,然后根据同一用户簇的偏好倾向,对每个项目进行奖励/处罚.实验结果表明,本文提出的算法在给定准确率的条件下,召回率可以显著提高50%左右. Giving or recommending appropriate content based on the quality of experience is the most important in recommender systems.This study proposes a new CBCF(Clustering-Based CF)method using an Incentivized/Penalized User(IPU)model,which is thus easy to implement.The purpose of this study is to improve recommendation performance of accuracy,recall and F1-score by studying the differences of users’preferences through IPU model.This study formulates a constrained optimization problem in which we aim to maximize the recall(or equivalently F1-score)for a given precision.To this end,users are divided into several clusters based on the actual rating data and Pearson correlation coefficient.Afterward,we give each item an incentive/penalty according to the preference tendency by users within the same cluster.Experiments show that under the condition of given accuracy,the recall rate of the proposed algorithm can be improved by about 50%.
作者 吴青洋 程旭 邓程鹏 丁浩轩 张宏 林胜海 WU Qing-Yang;CHENG Xu;DENG Cheng-Peng;DING Hao-Xuan;ZHANG Hong;LIN Sheng-Hai(Automotive Data of China(Tianjin)Co.Ltd,Tianjin 300393,China)
出处 《计算机系统应用》 2020年第8期135-143,共9页 Computer Systems & Applications
关键词 聚类 协同过滤推荐 F1-score 激励/惩罚用户模型 皮尔逊相关系数 推荐系统 clustering collaborative filtering F1-score incentivized/penalized user model Pearson correlation coefficient recommender system
  • 相关文献

参考文献2

二级参考文献21

共引文献97

同被引文献24

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部