摘要
应用正交矩阵标准形及其不变性得到了n阶矩阵迹方程■有正交解A=(alj)的充要条件,以及该方程的特征值都为实数或纯虚数的所有正交解的显示表达.由上述结果得到了相应迹方程的对称正交解的通解,并证明了其不存在反对称正交解.
By the canonical form of orthogonal matrix and its invariance, we obtain the necessary and sufficient conditions for the orthogonal solutions A=(aij) to an n order matrix trace equation■, and show the explicit expression of all general orthogonal solutions with the eigenvalues be all real or pure imaginary. Then we get the general symmetric orthogonal solutions to the corresponding trace equation, and prove that there is no antisymmetric orthogonal solution.
作者
林志兴
杨忠鹏
陈梅香
晏瑜敏
LIN Zhixing;YANG Zhongpeng;CHEN Meixiang;YAN Yumin(School of Mathematics and Finance,Putian University,Putian 351100,China)
出处
《延边大学学报(自然科学版)》
CAS
2020年第2期115-121,共7页
Journal of Yanbian University(Natural Science Edition)
基金
国家自然科学基金资助项目(61772292)
福建省自然科学基金资助项目(2017J01565,2018J01426)。
关键词
正交矩阵
矩阵迹方程
解的显示表达
正交标准形
特征值
orthogonal matrix
matrix trace equation
explicit expression of solution
orthogonal canonical form
eigenvalue