非侵入式用电行为感知技术探讨
摘要
介绍了非侵入式用电行为感知技术框架,对非侵入式用电负荷的采集处理与算法进行了研究,阐述了非侵入式用电行为感知技术的应用情况。
出处
《机电信息》
2020年第20期139-140,共2页
参考文献5
-
1许鹏,孙毅,石墨,李彬,祁兵.负荷态势感知:概念、架构及关键技术[J].中国电机工程学报,2018,38(10):2918-2926. 被引量:29
-
2王继业,邓春宇,郑亚芹,张玉天,刘凤魁.基于HDBSCAN动态跟踪客户用电行为模式[J].供用电,2019,36(1):10-16. 被引量:4
-
3李琳,魏鑫,孙胜宇.居民侧智能用电泛在感知技术与多元精准服务研究[J].供用电,2019,36(6):10-15. 被引量:21
-
4孙毅,许鹏,武昕,陆俊.面向用电侧电能质量监测的时空压缩感知方法[J].电网技术,2015,39(8):2351-2357. 被引量:13
-
5朱文俊,王毅,罗敏,林国营,程将南,康重庆.面向海量用户用电特性感知的分布式聚类算法[J].电力系统自动化,2016,40(12):21-27. 被引量:67
二级参考文献77
-
1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
-
2Zheng Weiyan, Wu Weilin. A power-quality event data compression algorithm based on advanced support vector machine[C]//Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, IEEE, Nanjing, 2008: 2076-2080.
-
3Zhang Jingchao, Fu Ning. Compressive circulant matrix based analog to information conversion[J]. IEEE Signal Processing Letters, 2014, 21(4): 428-431.
-
4Bioucas-dias J M, Figueiredo M. Two-step algorithms for linear inverse problems with non-quadratic regularization[C]//IEEE International Conference on Image Processing, IEEE, San Antonio, Texas. 2007: 105-108.
-
5关于推进“互联网+”智慧能源发展的指导意见[EB/OL].[2016-02-24].http://www.law-lib.com/law/law-view.asp?id-519961.
-
6VERDU S V, GARCIA M O, SENABRE C, et al. Classification, filtering, and identification of electrical customer load patterns through the use of self organizing maps[J]. IEEE Trans on Power Systems, 2006, 21(4) : 1672 1682.
-
7KOIVISTO M, HEINE P, MELLIN I, et al. Clustering of connection points and load modeling in distribution systems[J]. IEEE Trans on Power Systems, 2013, 28(2): 1255 1265.
-
8CHICCO G, NAPOLI R, PIGLIONE F. Comparisons among clustering techniques for electricity customer classifieation[J].IEEE Trans on Power Systems, 2006, 21(2) : 933-940.
-
9VARGA E D, BERETKA S F, NOCE C, et al. Robust real- time load profile encoding and classification framework for efficient power systems operation[J]. IEEE Trans on Power Systems, 2015, 30(4): 1897-1904.
-
10ZHONG S, TAM K. Hierarchical classification of load profiles based on their characteristic attributes in frequency domain[J]. IEEE Trans on Power Systems, 2015, 30(5): 2434-2441.
共引文献127
-
1李青,齐林海,田璐,王红,田世明,卜凡鹏.一种融合降维和聚类的电力用户高效分类方法[J].电力信息与通信技术,2018,16(11):12-18. 被引量:5
-
2吴杰,丁明,张晶晶.基于云模型和k-means聚类的风电场储能容量优化配置方法[J].电力系统自动化,2018,42(24):67-73. 被引量:37
-
3陆俊,陈志敏,龚钢军,徐志强,祁兵.基于极限学习机的居民用电行为分类分析方法[J].电力系统自动化,2019,43(2):97-104. 被引量:41
-
4许鹏,孙毅,张健,吕艳霞,李彬,祁兵.基于人工智能代理的负荷态势感知及调控方法[J].电力系统自动化,2019,43(3):178-186. 被引量:31
-
5李彬,陈京生,李德智,石坤,杨斌,祁兵,孙毅,奚培锋.我国实施大规模需求响应的关键问题剖析与展望[J].电网技术,2019,43(2):694-704. 被引量:57
-
6黄建明,瞿合祚,李晓明.基于短时傅里叶变换及其谱峭度的电能质量混合扰动分类[J].电网技术,2016,40(10):3184-3191. 被引量:105
-
7李滨,刘铸峰,黄柳军,包岱远,吕仁周.县级电网线损管理综合对标评价[J].电网技术,2016,40(12):3871-3879. 被引量:22
-
8雷景生,郝珈玮,朱国康.基于“分层-汇集”模型的短期电力负荷预测[J].电力建设,2017,38(1):68-75. 被引量:9
-
9陆俊,朱炎平,彭文昊,孙毅.智能用电用户行为分析特征优选策略[J].电力系统自动化,2017,41(5):58-63. 被引量:64
-
10蔡恒,伍惠铖,邹知斌.某居民小区用电调查与负荷分析[J].江西电力,2017,41(2):24-27. 被引量:5