摘要
采用长短时记忆(LSTM)神经网络预测方法对某岛礁地形模型的四个典型波浪试验数据进行预测分析,并建立了单步和多步预测模型.首先对波高时间序列数据进行归一化处理;然后建立了包括输入层、隐藏层和输出层的LSTM网络模型框架;最后对测试样本进行单步预测,将预测结果与支持向量机(SVM)模型和反向传播(BP)模型进行了对比.结果表明:LSTM神经网络预测精度有明显优势;多步预测中,提高预测时长其预测精度并无明显降低.
Long-short term memory(LSTM)neural network prediction method was used to predict and analyze the four typical wave test data of a certain island reef topography model,and the single-step and multi-step prediction models were established.First,the wave height time series were normalized.Second,LSTM network model framework including input layer,hidden layer and output layer was established.Finally,the test samples were predicted in a single step,and the predicted results were compared with the support vector machine(SVM)and back propagation(BP)models.Results show that the LSTM neural network has obvious advantages in predicting accuracy.In the multi-step forecasting,the prediction accuracy would not decrease obviously when the prediction time is increased.
作者
赵勇
苏丹
邹丽
王爱民
ZHAO Yong;SU Dan;ZOU Li;WANG Aimin(College of Naval and Ocean Engineering,Dalian University of Technology,Dalian 116024,China;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai 200240,China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第7期47-51,共5页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(51679021,51979032,51939003)
中央高校基本科研业务费专项资金资助项目(3132019115)
青岛海洋科学与技术国家实验室开放基金资助项目(QNLM2016ORP0402)
工业装备结构分析国家重点实验室自主研究课题(S18408)
国防基础科研计划资助项目(SXJQR2018WDKT02)。