摘要
船舶航速变化、空压机变转速运行等因素会引起变频振动。减振浮筏是现代船舶上普遍采用的一种双层隔振系统,但其并未在振动源头上采取措施。针对船舶浮筏上的变频振动,基于电磁弹簧原理对电磁吸振器进行优化设计。通过有限元分析得到吸振器的结构静变形、应力分布与其各阶谐振频率和振型,通过电磁仿真得到吸振器的磁场分布。对吸振器的刚度线性度进行优化以提高吸振器的频率跟踪控制精度。通过电磁力的解析模型优化目标函数,提出一种电磁刚度线性度的优化方法,并通过对实验样机进行加工,实现对100 kg负载的变频振动频率跟踪振动抑制的实验验证。
Ship speed change and air compressor’s variable speed operation can cause frequency-varying vibration.Vibration floating raft is a kind of double-layer vibration isolation system commonly used in modern ships to suppress the frequency-varying vibration.But it doesn’t do anything to the vibration sources.In this paper,the electromagnetic vibration absorber is optimized based on the electromagnetic spring principle to solve the problem of the frequency-varying vibration of the floating raft.The structural static deformation,stress distribution,resonance frequencies and modals of the vibration absorber are obtained by means of finite element analysis,and the magnetic field distribution of the vibration absorber is obtained by electromagnetic simulation.The stiffness linearity of the vibration absorber is optimized to improve the precision of frequency tracking control performance.By optimizing the objective function of the analytical model of the electromagnetic force,an optimization design method of electromagnetic stiffness linearity is proposed.Finally,an experimental prototype is prepared and the effectiveness of the frequency-varying vibration tracking suppression of 100kg load is verified based on this prototype.
作者
张博
王熙
吴浩慜
杨斌堂
ZHANG Bo;WANG Xi;WU Haomin;YANG Bintang(Shanghai Marine Equipment Research Institute,Shanghai 200031,China;State Key Laboratory of Mechanical System and Vibration,Shanghai Jiaotong University,Shanghai 200240,China;School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处
《噪声与振动控制》
CSCD
2020年第4期213-218,共6页
Noise and Vibration Control
基金
国家自然科学基金资助项目(51775349)
机械系统与振动国家重点实验室开放课题基金资助项目(MSV202003)。
关键词
振动与波
吸振器
船舶振动
电磁弹簧
刚度线性度优化
vibration and wave
vibration absorber
ship vibration
electromagnetic spring
stiffness linearity optimization