摘要
设(X,T)为动力系统,其中X是可分的Frechet空间和T:X→X是算子,首先证明了以下命题等价:(1)(X,T)是敏感的;(2)(X,T)是multi敏感;(3)(X,T)是multi-thick敏感;(4)(X,T)是thick敏感.不仅如此,还证明了如下命题:(X,T)是syndetic敏感当且仅当(X,T)是thickly syndetic敏感.如果(X,T)是syndetic传递,那么(X,T)是syndetic敏感.如果(X,T)是F-超循环,那么(X,T)是thickly syndetic敏感.如果(X,T)是syndetic传递,那么(X,T)是传递敏感.最后证明了迭代动力系统也有类似的结果.
Let(X,T)be a linear dynamical system,where X is a separable Frechet space and T:X→X is a operator.first we prove the following assertions are equivalent:(1)(X,T)is sensitive;(2)(X,T)is multi-sensitive;(3)(X,T)is multi-thickly-sensitive;(4)(X,T)is thickly sensitive.Then we prove the following propositions:(X,T)is syndetically sensitive if and only if(X,T)is thickly syndetically sensitive.If(X,T)is syndetic transitive,then(X,T)is syndetically sensitive.If(X,T)is frequently hypercyclic,then(X,T)is thickly syndetically sensitive.If(X,T)is syndetically transitive,then(X,T)is transitively sensitive.Moreover,the iterated function system has the similar results.
作者
姚权权
朱培勇
Yao Quanquan;Zhu Peiyong(School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2020年第4期1061-1071,共11页
Acta Mathematica Scientia
基金
国家自然科学基金(11501391)。