期刊文献+

基于BERT模型的投资者情绪指数建模及与价格关系分析 被引量:2

Modeling of Investors’Sentiment Index Based on BERT Model and Analysis of Its Relationship with Price
下载PDF
导出
摘要 基于BERT模型,应用21家期货公司行情预测分析文本数据,构建了期货市场投资者情绪指数;在此基础上,运用格兰杰因果检验分析了期货市场价格与市场情绪指数的相互影响作用。研究结果表明,BERT模型相较基于经典分类算法模型在各评价指标上均有约10%的提升。同时,投资者情绪指数与期货收盘价之间存在相互影响,期货收盘价对投资者情绪的影响程度更大,影响持续时间更短。 Based on the BERT model,the text data of 21 futures companies’ market prediction and analysis was used to construct an investors’ sentiment index for the futures market.On this basis,Granger causality test was used to analyze the interaction between the futures market price and the market sentiment index.The research results show that the BERT model has improved about 10%in various evaluation indicators compared with the model based on the classic classification algorithm.At the same time,there is a mutual influence between the investors’ sentiment index and the futures closing price.The futures closing price has a greater degree of influence on investors’ sentiment and has a shorter duration.
作者 林杰 江晨曦 LIN Jie;JIANG Chenxi(School of Economics and Management,Tongji University,Shanghai 200092,China)
出处 《上海管理科学》 2020年第4期75-80,共6页 Shanghai Management Science
基金 国家自然科学基金项目“社交媒体中用户创新价值度测量模型及互动创新管理方法研究”(71672128) 国家重点研发计划“全流程管控的精细化执行技术及装备研究”(2018YFC0830400)。
关键词 投资者情绪指数 BERT模型 期货市场 文本情感分类 investors’sentiment index BERT model futures market sentiment classification of text
  • 相关文献

参考文献1

二级参考文献23

  • 1Mizrach B, Weerts S. Experts online:An analysis of trading activity in a public internet chat room [ J ]. Journal of Economic Behavior & Organization, 2009, 70(1/2) :266-281.
  • 2Van Bommel J. Rumors [ J ]. The Journal of Finance, 2003,58 (4) : 1499-1520.
  • 3Hong H, Kubik J D, Stein J C. Social interaction and stock-market participation [ J ]. The Journal of Fi- nance ,ZO04,59( 1 ) :137-163.
  • 4Man H, Counts S, Bollen J. Predicting financial mar- kets : Comparing survey, news, Twitter and search en- gine data [ J/OL ]. Ithaca NY: ArXiv e-prints, 2011. http://arxiv, org/pdf/lll2. 1051. pdf.
  • 5Joseph K, Wintoki M B, Zhang Z. Forecasting abnor- mal stock returns and trading volume using investor sentiment : Evidence from online search [ J ]. Interna- tional Journal of Forecasting, 2011,27 ( 4 ) : 1116 - 1127.
  • 6De Choudhury M, Sundaram H, John A, Seligmann D D. Can blog communication dynamics be correlated with stock market activity ? [ C ] //Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia. New York, NY : ACM, 2008:55-60.
  • 7Mao Y, Wei W, Wang B, Liu B. Correlating S&P 500 stocks with Twitter data [ C ] //Proceedings of the First ACM International Workshop on Hot Topics on Interdisciplinary Social Networks Research. New York, NY : ACM, 2012:69-72.
  • 8Zhang X, Fuehres H, Gloor P A. Predicting asset val- ue through Twitter buzz [ C ] // Altmann J, Bauml U, Kramer B J. Advances in Collective Intelligence 2011. Berlin : Springer, 2012:23-34.
  • 9Sabherwal S, Sarkar S K, Zhang Y. Do internet stock message boards influence trading? Evidence from heavily discussed stocks with no fundamental news [ J ]. Journal of Business Finance & Accounting, 2011,38(9/10) :1209-1237.
  • 10Ruiz E J, Hristidis V, Castillo C, Gionis A, Jaimes A. Correlating financial time series with micro-blog- ging activity [ C ]//Proceedings of the Fifth ACM In- ternational Conference on Web Search and Data Min- ing, New York, NY : ACM ,2012:513-522.

共引文献41

同被引文献65

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部