期刊文献+

基于姿态引导的场景保留人物视频生成

Pose-guided scene-preserving person video generation algorithm
下载PDF
导出
摘要 人物视频生成技术是通过学习人体结构与运动的特征表示,实现从特征表示到人物视频帧的空间生成映射。针对现有的人物视频生成算法未考虑背景环境转换及人体姿态估计精度较低等问题,提出一种基于姿态引导的场景保留人物视频生成算法(PSPVG)。首先,取合适的源视频和目标视频,利用分割人物外观的视频帧代替源视频帧作为网络的输入;然后,基于GAN的运动转换模型将源视频中的人物替换成目标人物,并保持动作一致性;最后,引用泊松图像编辑将人物外观与源背景融合,去除边界异常像素,实现将人物自然地融入源场景且避免改变画面背景环境和整体风格。该算法使用分割出的前景人物图代替源视频帧中的人物,减少背景干扰,提高姿态估计精度,自然地实现运动转移过程中源场景的保留,生成艺术性与真实性和谐并存的人物视频。 The person video generation technology learns the feature representation of human body structure and motion,so as to realize the spatial generation mapping from the feature representation to the character video frame.In view of the existing person video generation algorithm lacking in the transformation of background environment and the low accuracy of human pose estimation,a pose-guided scene-preserving person video generation algorithm was proposed.First,the appropriate source video and target video were selected,and the video frame with the appearance of the segmented character served as the network input instead of the source video frame.Then,based on GAN,a motion transformation model was employed to replace characters in source videos with target characters and maintain the consistency of motion.Finally,the Poisson image editing was used to fuse the character appearance with the source background,enabling the flowed advantages:(a)removing border anomaly pixels;(b)realizing character blending naturally into the source scene;and(c)avoiding changing the background environment and overall image style.The proposed algorithm used the segmented foreground person image instead of the source video frame to reduce background interference and improve the accuracy of pose estimation,thus naturally realizing scene-preserving during the motion transfer process and producing artistic and authentic person videos.
作者 李桂 李腾 LI Gui;LI Teng(School of Electrical Engineering and Automation,Anhui University,Hefei Anhui 230601,China)
出处 《图学学报》 CSCD 北大核心 2020年第4期539-547,共9页 Journal of Graphics
基金 国家自然科学基金项目(61572029) 安徽省杰出青年基金项目(1908085J25)。
关键词 人物视频生成 姿态估计 运动转换 生成对抗网络 图像处理 person video generation pose estimation motion transfer generative adversarial networks image processing
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部