摘要
用Davenport-Heilbronn方法证明了存在无穷多素数p,可用λ1x1^3+λ2x2^3+λ3x3^3+λ4x4^3+λ5x5^5+λ6x6^5的整数部分表示,其中xi表示自然数,λ1/λ2是无理数,即[λ1x1^3+λ2x2^3+λ3x3^3+λ4x4^3+λ5x5^5+λ6x6^5]=p。
Using the method of Davenport-Heilbronn,proved that the integer parts ofλ1x1^3+λ2x2^3+λ3x3^3+λ4x4^3+λ5x5^5+λ6x6^5 can represent an infinite number of prime numbers,where xi represent natural numbers andλ1/λ2 is an irrational number,that is,there exists an infinite number of prime numbers p,such that[λ1x1^3+λ2x2^3+λ3x3^3+λ4x4^3+λ5x5^5+λ6x6^5]=p.
作者
蒋颜如
JIANG Yanru(College of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)
出处
《河南教育学院学报(自然科学版)》
2020年第2期25-30,共6页
Journal of Henan Institute of Education(Natural Science Edition)
关键词
整数变量
积分
素数
非线性型
混合幂
integer variables
integral
prime numbers
nonlinear type
mixed power