期刊文献+

基于GA-BP光伏预测算法小型太阳能发电系统设计 被引量:3

Design of Small Solar Power Generation System Based on GA-BP Prediction Algorithm
下载PDF
导出
摘要 光伏发电输出功率受多种外界环境因素影响,存在着发电功率随机性和产能过剩的问题。针对这一问题,在分析传统BP神经网络的基础上提出了基于遗传算法优化BP(Back Propagation)神经网络的光伏预测模型。对温度、风速、压强、湿度和太阳辐射强度数据进行归纳分析,运用Matlab神经网络和遗传算法工具箱建立了基于GA-BP光伏预测算法的发电模型,并通过大量数据对算法进行训练,使得预测值与实际值误差达到最小,最后通过电路的实物搭建对该方法进行验证。该方法能提高对太阳能的利用率,同时为国家大型发电站并网问题提供参考。 Due to the effects of various external environmental factors on the output power of photovoltaic power generation,there are problems of randomness of power generation and excess capacity.To solve this problem,based on a analysis of the traditional BP neural network,this paper proposes a photovoltaic prediction model to optimize BP(Back Propagation)neural network by genetic algorithm.This paper summarizes and analyzes the data of temperature,wind speed,pressure,humidity and solar radiation intensity.Using Matlab neural network and toolbox of genetic algorithm,the power generation model of GA-BP photovoltaic prediction algorithm is established,and a large number of data are used to train the algorithm to minimize the error between the predicted value and the actual value.Finally,the method is verified by circuit simulation.This method can improve the utilization rate of solar energy and provide a reference for the interconnection of large power stations in China.
作者 刘元博 王英立 张薇 LIU Yuan-bo;WHANG Ying-li;ZHANG Wei(Institute of Measurement and Control Technology and Communication Engineering,Harbin University of Science and Technology,Harbin 150080,China)
机构地区 哈尔滨理工大学
出处 《传感器世界》 2020年第7期38-42,共5页 Sensor World
基金 黑龙江省大学生创新创业训练计划项目(No.201910214056)。
关键词 光伏发电 神经网络 遗传算法 功率预测 photovoltaic power generation neural network genetic algorithm power prediction
  • 相关文献

参考文献5

二级参考文献88

  • 1田旭光,宋彤,刘宇新.结合遗传算法优化BP神经网络的结构和参数[J].计算机应用与软件,2004,21(6):69-71. 被引量:64
  • 2范睿,李国斌,景韶光.基于实数编码遗传算法的混合神经网络算法[J].计算机仿真,2006,23(1):161-164. 被引量:26
  • 3李伟超,宋大猛,陈斌.基于遗传算法的人工神经网络[J].计算机工程与设计,2006,27(2):316-318. 被引量:69
  • 4柴毅,尹宏鹏,李大杰,张可.基于改进遗传算法的BP神经网络自适应优化设计[J].重庆大学学报(自然科学版),2007,30(4):91-96. 被引量:29
  • 5OZKAYA B, DEMIR A, BILGILI M S. Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors[J]. Environmental Modeling & Software, 2007, 22(6): 815-822.
  • 6FARSI H, GOBAL F. Artificial neural network simulator for supercapacitor performance prediction[J]. Computational Materials Science, 2007, 39(3): 678-683.
  • 7VERMAAK J, BOTHA E C. Recurrent neural networks for short-term load forecasting[J]. IEEE Transactions on Power Systems, 1998, 13(1): 126-132.
  • 8BYUNGWHAN K, JUNGKI B. Prediction of plasma processes using neural network and genetic algorithm[J]. Solid-State Electronics, 2005, 49: 1576-1580.
  • 9YANG L, DAWSON C W, BROWN M R, et al. Neural network and GA approaches for dwelling fire occurrence prediction[J]. Knowledge-Based Systems, 2006, 19(4): 213-219.
  • 10BAREAU B, TELIALA I, KAISA S. Neural networks and genetic algorithms for bankruptcy predictions[J]. Expert Systems With Applications. 1996, 1 (4): 407-413.

共引文献216

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部