期刊文献+

通信辐射源运动轨迹相似性分析

Similarity analysis of motion trajectory of communication transmitter
下载PDF
导出
摘要 针对传统运动轨迹相似性分析利用时空信息效率不高问题,结合通信辐射源主体特点,提出基于时空和语义信息的辐射源轨迹相似性分析算法。在该算法中,对相似运动轨迹距离测度进行改进,提出基于马氏距离的轨迹时空相似度算法,将轨迹分割后计算相似度,克服了时间不匹配轨迹和不同采样间隔对轨迹相似性判断的影响;同时,结合基于高效K近邻(K-nearest neighbor,KNN)相似搜索的语义相似数据搜索算法,实现对辐射源相似轨迹的准确判断。该算法能够准确判断相似轨迹,优于现有的相似轨迹判断方法,且适应噪声环境。仿真实验结果验证了该算法的性能。 Aiming at the problem of the inefficiency of spatio-temporal information in traditional trajectory similarity analysis,combined with the main characteristic of communication transmitter,an algorithm of transmitter trajectory similarity analysis based on spatio-temporal and semantic information is proposed.In this algorithm,the distance measurement of similar motion trajectory is improved,and a trajectory spatio-temporal similarity algorithm based on Mahalanobis distance is proposed,which computes the similarity after trajectory segmentation,overcomes the influence of time mismatch trajectory and different sampling intervals on trajectory similarity judgment.At the same time,combined the semantic similarity data search algorithm based on efficient K-nearest neighbor(KNN)similarity search,accurate judgment of the similar trajectory of the transmitter is realized.The algorithm can judge the similar trajectory accurately,which is superior to the existing similar trajectory judgment methods,and adapts to the noise environment.The simulation experiment results verify the performance of the algorithm.
作者 季玙璠 王伦文 张孟伯 JI Yufan;WANG Lunwen;ZHANG Mengbo(College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第9期1920-1926,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61273302) 国防科技创新特区项目(19-H863-01-ZT-003-003-12)资助课题。
关键词 通信辐射源运动轨迹 时空信息 语义信息 相似度 相似搜索 communication transmitter trajectory spatio-temporal information semantic information simi-larity similarity search
  • 相关文献

参考文献7

二级参考文献57

  • 1巴宏欣,赵宗贵,杨飞,董强,张涛.态势估计——概念、内容与方法[J].解放军理工大学学报(自然科学版),2004,5(6):10-16. 被引量:16
  • 2中国互联网络发展状况统计报告[R].2014.
  • 3Gidofalvi G, Pedersen T B. Mining long, sharable patterns in trajectories of moving objects[J]. Geoinformatiea, 2009,13 (1) :27-55.
  • 4Zheng Y+ Xie X. Learning travel recommendations from user-generated GPS traces [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011,2(1) :2.
  • 5Lee W H, Tseng S S, Tsai S H. Knowledge based real time travel time prediction system for urban network [J]. Expert Systems with Applications, 2009, 36(3):4239-4247.
  • 6Kitamoto A. Spatio-temporal data mining for typhoon image collection [J]. Journal of Intelligent Information Systems, 2002,19(1) :25-41.
  • 7Zheng Y, Liu F, Hsieh H P. U-Air: When urban air quality inference meets big data[C]//The 19th ACM SIGKDD Interna+ tional Conference on Knowledge Discovery and Data Mining. Chicago, IL, USA: ACM, 2013:1436 -1444.
  • 8Pan G, Qi G, Zhang W S, et al. Trace analysis and mining for smart cities: Issues, methods, and applieations[J]. IEEE Communications Magazine, 2013,51(6) :120-126.
  • 9Zheng K, Zheng Y, Yuan N J, et al. On discovery of gathering patterns from trajectories[C]//IEEE 29th International Con- ference on Data Engineering. Brisbane, Queensland, Australia: IEEE Computer Society Press, 2013:242-253.
  • 10Lee J G, Han J, Li X. Trajectory outlier detection: A partition-and-detect framework[C]//Proceedings of the 24th Interna- tional Conference on Data Engineering. Washington: IEEE Computer Society, 2008:140-149.

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部