期刊文献+

协变量存在缺失的因果效应稳健估计

Robust Estimation of Causal Effect With Missing Covariates
下载PDF
导出
摘要 文章借助逆概加权方法作用于影响函数,给出协变量存在缺失时倾向评分的估计方法。同时,针对现实研究中倾向评分取值可能接近0或1的情况,应用倾向评分扩展加权给出因果效应的估计。特别是推广Hirano(2003)的方法,导出其因果效应的渐近方差。模拟结果表明,提出的方法估计出的方差与样本方差接近,并且得到的因果效应优于传统方法,具有较小的Bias与MSE。 This paper proposes the estimation method of propensity score by applying the inverse probability weighting method to the influence function when the covariates are missing.At the same time,in view of the fact that the value of propensity score may be close to 0 or 1 in actual research,the paper uses the extended weighting of propensity score to estimate the causal effect,particularly extending the method of Hirano(2003)to derive the asymptotic variance of its causal effect.The simulation results show that the variance estimated by the proposed method is close to the sample variance,and that the causal effect obtained by the proposed method is superior to the traditional method,with less bias and MSE.
作者 韩锋 Han Feng(Teachers'College,Beijing Union University,Beijing 100011,China)
出处 《统计与决策》 CSSCI 北大核心 2020年第14期37-39,共3页 Statistics & Decision
基金 国家社会科学基金后期资助项目(18FTJ003)。
关键词 协变量缺失数据 因果效应 渐近方差 随机缺失机制 missing data for covariates causal effect asymptotic variance random missing mechanism
  • 相关文献

参考文献1

二级参考文献14

  • 1Rosenbaum, P. R.,Rubin, D. B. The Central Role of the Propensity Score in Observational Studies for Causal Effects[J].Biometrika, 1983, (70).
  • 2Rosenbaum P, Rubin D. Reducing the Bias in Observational Studies Using Sub-classification on the Propensity Score[J]. Journal of the American Statistical Association, 1984,79.
  • 3Hirano K, Imbens G, Ridder, G. Efficient Estimation of Average Treat- ment Effects Using the Estimated Propensity Score[J]. Econometrica 2003,71.
  • 4Gabriel Montes-Rojas., A Note on the Variance of Average Treatment Effects Estimators[J]. Economics Bulletin, 2009,29(4).
  • 5A Weighted Estimating Equation for Missing Covariate Data with Properties Similar to Maximum Likelihood Author(s): Stuart R. Lip- sitz, Joseph G. Ibrahim, Lue Ping Zhao Source[J].Journal of the Ameri- can Statistical Association, 1999, (94).
  • 6Little, R. J. A. Pattern-Mixture Models for Multivariate Incom- plete Data[J]. Journal of the American Statistical Association, 1993,(88).
  • 7Ralph B. D'AGosTINo, Jr.,Donald B. RUBIN. Estimating and Using Propensity Scores with Partially Missing Data[Z].2000.
  • 8Olkin, I.,Tate, R. F. Multivariate Correlation Models With Mixed Dis- crete and , Continuous Variables[J].Annals of Mathematical Statistics, 1961,(32).
  • 9Schafer, J. L. Analysis of Incomplete Data[M].London: Chapman and Hall. ,1997.
  • 10Dempster, A. P., Laird, N. M., Rubin, D. B.Maximum Like- lihood Estimation from Incomplete Data via the EM Algorithm(with discus- sion[J]. Journal of the Royal Statistical Society, Ser. B, 1977,(39).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部